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Difference-based estimators for the error variance are popular since they do not
require the estimation of the mean function. Unlike most existing difference-based
estimators, new estimators proposed by Miiller et al. (2003) and Tong and Wang
(2005) achieved the asymptotic optimal rate as residual-based estimators. In this
article, we study the relative errors of these difference-based estimators which
lead to better understanding of the differences between them and residual-based
estimators. To compute the relative error of the covariate-matched U-statistic
estimator proposed by Miiller et al. (2003), we develop a modified version by using
simpler weights. We further investigate its asymptotic property for both equidistant
and random designs and show that our modified estimator is asymptotically efficient.
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1. Introduction
We consider the following nonparametric regression model:
Yi=gx)+e€, 1=<i<n, (1)

where Y;’s are observations, g is an unknown mean function, and €;’s are
independent and identically distributed random errors with zero mean and common
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variance ¢?. Estimation of the error variance ¢’ has attracted a great deal of
attention; see for example Wahba (1978), Rice (1984), Gasser et al. (1986), Buckley
et al. (1988), Hall and Marron (1990), Hall et al. (1990), Carter and Eagleson (1992),
Dette et al. (1998), Miiller et al. (2003), Munk et al. (2005), and Tong and Wang
(2005), among others. A good estimator of ¢? is essential for inferences and choosing
the amount of smoothing (Rice, 1984).

For example, suppose that x; € [0, 1] and let

1
wW,[0,1] = {g : &, ¢ absolutely continuous,/ (g?(x)) dx < oo}.
0

A cubic spline estimate of g, g;, is the minimizer of the following penalized least
square:

J !
§ 2= ) 2 [ (¢70)*

where 1 is a smoothing parameter which controls the amount of smoothing. The
performance of a spline estimate critically depends on a good choice of 1. It is very
important to have a data-driven method for selecting /. The unbiased risk (UBR)
method estimates 4 as the minimizer of Wahba (1990)

1" R 202
- YooY = gi(x)) + thA(/l),
i=1

where A(A) is the hat matrix such that (2;(x,),...,& &))" = AW (Y,,...,¥)T.
Therefore, we need an estimate of ¢ without fitting the mean function g first.

Most estimators of ¢ in the literature are quadratic forms of the response
vector Y = (Y;,...,Y)T:

63 = Y'DY/tr(D). ()

These estimators fall into two classes in general. The first class of estimators are
based on the residual sum of squares from some nonparametric fit to g. Specifically,
we first estimate g by a nonparametric method such as kernel smoothing or
spline smoothing (Carter and Eagleson, 1992; Hall and Marron, 1990; Hastie and
Tibshirani, 1990; Wahba, 1990). For linear smoothers we have Y = AY, where A is
a smoother matrix. Then an estimator of variance has the form (2) with D = (I —
A)T(I — A). We refer to estimators in the first class as residual-based estimators.
Residual-based estimators depend critically on the choice of smoothing parameter,
which requires knowledge of some unknown quantity such as fol g (H?*dt/a?
(Hall and Marron, 1990) or fol g’ (t)*dt/c? (Buckley et al., 1988). Therefore, the
practical applications of these estimators are somewhat limited.

Another class of estimators use differences to remove trend in the mean, an idea
originating in time series analysis. We refer to estimators in this class as difference-
based estimators; see Sec. 2 for a detailed review. Difference-based estimators do
not require estimate of the mean function and thus are very popular in practice
due to their ease of implementation. In addition, difference-based estimators are
attractive from a practical point of view because they often have small biases for
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small sample sizes (Dette et al., 1998). However, as we will see in Sec. 2, none of the
fixed-order difference-based estimators achieves the following asymptotic optimal
rate for residual-based estimators (Buckley et al., 1988; Eagleson, 1989; Hall and
Marron, 1990):

MSE(6%) = n~'var(e?)(1 + o(n™")). (3)

Recently, Miiller et al. (2003) and Tong and Wang (2005) proposed two
new types of difference-based estimators for the error variance ¢*. Both of them
reach the asymptotic optimal rate (3). Note that the dominant term in MSE,
n~'var(e*), cannot be reduced. Hall and Marron (1990) showed that the relative
error of MSE, the second term in (3), is of size n~#~D/@4+D for their residual-
based estimator, and it is the smallest possible in the minimax sense (see Sec. 4).
In this article, we study the relative errors of difference-based estimators which
lead to better understanding of the differences between them and residual-based
estimators. We review the existing difference-based estimators in Sec. 2. In Sec. 3,
we develop a modified version of the covariate-matched U-statistics estimator by
Miiller et al. (2003) using simpler weights. We further investigate its asymptotic
property for both equidistant and random designs, and show that our modified
estimator is asymptotically efficient. We compare the relative errors of difference-
based estimators to residual-based estimators in Sec. 4 and present technical details
and proofs in Sec. 5.

2. Existing Difference-Based Estimators

2.1. Fixed-Order Difference-Based Estimators

The order of a difference-based estimator is defined as the number of related
observations involved in calculating a local residual. Rice (1984) proposed a
first-order difference-based estimator

1 n
62 = —— Y.— Y. )%
O-R Z(I’l N 1) lzzz( i l—l)

an idea originated by von Neumann (1941) as the mean square successive difference.
Under proper conditions, we have MSE(6}) = 2n~'var(e?)(1 + o(1)).

Gasser et al. (1986) proposed the following second-order difference-based
estimator:

s 1 n—1 v
a’ = — c,%,
GSJ (Vl _ 2) g i

where €; is the difference between Y, and the value at x; of the line joining (x;_,, ¥;_;)
and (x;;, Y,.;). The coefficient ¢; are chosen such that Ec?é’ = ¢ for all i when
g is linear. For equidistant design points, ¢, = +/6/3 for any i. Gasser et al. (1986)
showed that MSE(6%g,) = 2n~'var(€?)(1 + o(1)).

Hall et al. (1990) introduced the following optimal difference-based estimator:

) 1 n—my my 2
GZHKTZ Z ( Z dej+k> > 4)

n—r k=m;+1 \ j=—m,
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where m, and m, are non negdtive integers, r = m, + m, is referred to as the
order and the difference sequence d = {d, Vieem,...m, satisfies 3"d; =0, - d2 =1 and

,,,,] d,, # 0. The optimal sequence d,,,, is deﬁned to minimize the asymptotlc MSE
of r- Hall et al. (1990) showed that MSE(671(d,,,)) = n~'var(e?)(1 +r~' +
o(1)).

Clearly, none of the fixed-order difference-based estimators achieves the above
asymptotic optimal rate for residual-based estimators. Note that MSE(631(d,,,))
decreases asymptotically with the order r. Theoretically, 67x1(d,,) achieves the
optimal rate (3) as r — oo and r/n — 0 (Dette et al., 1998).

2.2. Miiller, Schick and Wefelmeyer’s Estimator

Miiller et al. (2003) proposed the following covariate-matched U-statistic:

i=1 j#i

where w;; are non negative symmetric weights depending on covariates only and
satisfying »°,; w;;/n(n — 1) = 1. Unlike the traditional difference-based estimators,
the estimator (5) uses all squared differences of paired observations to estimate o2
Under some conditions on the weights, Miiller et al. (2003) showed that (5) is
asymptotically efficient. Specifically, 63,y has the following i.i.d. representation:

GMSW = - ZE +o(n'?), (6)

where €;’s are defined in (1). Therefore, 63,5y possesses (3) by noting that 63,y has
the asymptotic variance n~'var(e?) and the bias square is of order o(n~'). Miiller
et al. (2003) also proposed the following kernel specific weights:

1/1 1
w;; = 5(}7 + ]"T)Kh(xi - X)), )

i J

where K, (x) = K(x/h)/h is a symmetric kernel function with bandwidth %, and
fi=2XpuKnxi—x)/(n—=1),i=1,....n

2.3. Tong and Wang’s Estimator

Motivated by the fact that the Rice estimator is always positively biased, Tong and
Wang (2005) introduced the lag-k Rice estimators as:

Z Y, =Y. )% k=1,2,...,

or (k) = -0 k):k+l

where 6 = 64(1). Suppose that the mean function g has a bounded first derivative
and define J = fol{g’()c)}2 dx/2. It is easy to see that

E(6%(k)) = o* + Jd,, for any k = o(n), (8)
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where d, = k*/n®. Treating (8) as a simple linear regression model with d, as the
independent variable, the Tong and Wang estimator, 63y, is defined as the intercept
which corrects the corresponding bias. Under proper conditions, Tong and Wang
(2005) showed that with an optimal bandwidth,

MSE (63 (hop)) = n~'var(e?) (1 + 0(n™'?)), )

which satisfies (3).

3. Modified MSW Estimator

Note that the weights in (7) are not well defined on the event {mini]A‘,- =0}. We
consider a modified version of the MSW estimator,

GMSW = 2W ZZ(Y - Y)2 (10)

i=1 j#i

where w;; are some given weights and W =37, 3., w;;. It is easy to see that this
estimator is unbiased when g is a constant function. Different forms of weights
can be used. For example, for the equidistant designs on [0, 1] with x;, =i/n,
i=1,...,n, weights

1, if |x, —x;| = 1/n,

0, if |x —xj| > 1/n,

w;;

lead to the Rice estimator 65; and weights

4, if |x;—x;| = 1/n,
w; =1{-1, if [x; —x;| =2/n,
0, if [x; —x;| > 2/n,

with boundary values w;, = w,_, , = 2 lead to the GSJ estimator 655, = Y1, (¥; —

2Y, |+ Y. ,)?/6(n —2). In addition, the modified MSW estimator also possesses a
quadratic form such that 3,5y = Y"DY/tr(D) where

Zj;él Wy —Wpp T —Wwy,
1 —Wy Z#z Wy; - — Wy,
D=—
w
—Wy —Wy; e Zj;&n wnj

In this section, we consider kernel weights w,; = K,,(x; — x;) with bandwidth .
Note that our weights are simpler than those in (7). We distinguish two types of
designs: (i) equidistant design on [0, 1] with x; = i/n for 1 <i < n; and (ii) random
design where the x/s are an i.i.d. sample w1th a den51ty f on [0, 1] Assume that
the kernel K is of order r. That is, K satisfies f K(u)du =1, f L u'K(u)du =0
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for i=1,....,r—1, [} wK(u)du#0 and [’ K?(u)du < co (Eubank, 1999). The
boundary kernel will be employed in the region such that x is close to 0 or 1.

3.1. Equidistant Design

For a function m, denote ||m|, = /[ m2(z)dz and u,(m) = [~ z"m(z)dz. Using
the fact that G3,qy has a quadratic form, we have the following formula for the MSE
(Dette et al., 1998):

MSE(6ysw) = {(g"Dg)* + 40°g" D*g + 4g" {Ddiag(D)1}67y;

+ o*tr{diag(D)*}(y, — 3) + 20*tr(D)} /tr(D)?, (11)
where g = (g(x), ..., g(x,))T, diag(D) denotes the diagonal matrix of the diagonal
elements of D, 1= (1,..., 1)T and y, = E[(¢/0)'], i = 3, 4. The first term in (11) is
the squared bias and the last four terms make up the variance. When the random

errors are normally distributed, the second and the third terms are both equal to
Zero.

Theorem 3.1. Assume that the mean function g has the rth derivative on [0, 1]. Then
for equidistant designs with h — 0 and nh — oo, we have:

bias(525y) = C, 1" + o(h") + O(n), (12)
var(G3ew) = n~'var(€?) + (n*h)~'Cy + O(n~'h") + o(n~2h7"), (13)
MSE(63qw) = n~'var(e?) + CTh* + (n*h)~'C, + o((n’h) ™' + 1*") + O(n™?), (14)

where C; = u,(K) fol{(gz(x))(’) —2g(x)g"(x)}dx/2r!  and C, =2¢*|K|5. The
asymptotic optimal bandwidth is

c, 1/(2r+1)
e (35)

which is of order n=*/>+1),

The proofs of (12) and (13) in Theorem 3.1 are shown in Sec. 5. (14) is an
immediate result from (12) and (13) by noting that n~'4" is dominated by (n?h)~!
and h*" as h — 0. Substituting (15) into (14) leads to:

MSE(&ﬁdSW(h,,p,)) = n"'var(€’) (1 + O(n~®=D/Cr+Dy), (16)
This asymptotic rate reaches the optimal rate (3) for any » > 1. Furthermore,

with the optimal bandwidth, the following theorem shows that &3,y (%,,,) behaves
asymptotically like the average of the squared errors.

opt

Theorem 3.2. Under the same conditions as in Theorem 3.1, we have:

= 1 . —2r, I
GMsw(hapz) = ; Zelz + OP(n 2r/ (2 +1))' (17)

i=1
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Consequently, n'*(G3sw (h,,) — 0%) converges in distribution to a normal random
variable with mean zero and variance var(e?*).

The proof of Theorem 3.2 is given in Sec. 5. Note that the higher-order term in
(17) is expressed more precisely than that in Theorem 3.1 of Miiller et al. (2003).

3.2. Random Design

Suppose that the design points {x;,i = 1,..., n} are an i.i.d. sample with a non zero
density f on [0, 1]. Denote (gf)"” = (d/dx)"{g(x)f(x)}. Similarly as the equidistant
design, we have the following theorem.

Theorem 3.3. Assume that both the mean function g and the design density f have the
rth derivative on [0, 1] with h — 0 and nh — oo. Then
bias(Gyqw) = Csh" + o(h") + 0(n™"),
var(Gygw) = 1~ var(€’) + (n*h)"'C, + O(n'h") + o(n?h71),
MSE(6ysw) = 1 'var(€’) + Cih* + (n*h) ' Cy+ o ((n*h) ' + h”) + O(n™?), (18)

where  Cy = Qri|IfID)7 1, (K) f; {(£2)7 — 28N + [P} dx  and €y =
20%||K 3/ f113- The asymptotic optimal bandwidth is:

C, 1/Q2r+1)
hyp = <2rn2C§) . (19)

Comparing (18) with (14), the only differences are in the coefficients of h*"
and (n?h)~!. This implies that the asymptotic rate for the random design is again
optimal. The asymptotic normality property (17) also holds for random designs. The
proofs of Theorem 3.3 and the asymptotic normality are not shown because they
are similar to those for the equidistant design.

4. Comparison with Residual-Based Estimators

Hall and Marron (1990) proposed the following residual-based estimator:

&2 — Zzn:l(Yt B g('xi))z (20)
™M -2 Y wy+ 2 Z;:l wt‘zj

where g(x;) = >7_, w;;¥; is a kernel estimator of the mean function with weights
w;; = K{(x; — x;)/h}/ > ;_ K{(x; — x;)/h}, with h being the bandwidth and K(-)
being a kernel of order r. This estimator is unbiased when the mean function g is
zero. The MSE with an optimal bandwidth is given as:

MSE(&ZHM(hupt)) — n—lvar(€2) (1 + O(n—(4r—1)/(4r+l))) . (21)

Further, 67, — E(6%y) is asymptotically normally distributed with variance

n~'var(e*) as h — 0 and nh — oco. Although residuals presented in their article are
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based on kernel estimators, it applies to other methods such as smoothing spline
estimators as well.

Hall and Marron (1990) proved that the relative error of size n~“—D/Gr+D)
in (21), is the smallest possible in the minimax sense. None of the difference-
based estimators attains this optimal rate. This is probably the price paid by the
difference-based estimators for not estimating the mean function. Noting that 63,
is not kernel-based estimator and its relative error is always fixed at size n~'/?,
Tysw (o) has a smaller relative error than 61y, (h,,,) for any r > 2. Furthermore,
the difference-based estimator G3,qy (h,,,) With a kernel of order 2r attains the same
relative error size as the residual-based estimator 67, (h,,,) with a kernel of order r,
given that the mean function is smooth enough. We note that a smaller relative error
does not imply a better finite sample performance, especially for those estimators
depending on a subjective choice of smoothing parameter, a fact pointed out by
various authors previously. See Dette et al. (1998) and Tong and Wang (2005) for
more comparisons.

5. Proofs
This section includes the proofs of (12), (13), and (17) in Theorems 3.1 and 3.2.

Proof of (12). Note that tr(D) = 1. Then from (11):

_ p- Zj;éi wij(g(xj) - g(xi))2 A i
- 2W 2w

bias = g’ Dg , (22)

where

B = izwij(g(xj) - g(xi))z - Z w;; (g(x;) — g(xi))z = ZZ wij(g(xj) - g(xi))2~
i=1

i=1 j=1 i=1j=1

Let o(x) = Z_';=l v;(8(x;) — g(x))?, where v; = K;,(x; — x). Then B =", 6(x,).
Thus to calculate B, it is sufficient to figure out é(x):

50 = 3 uy(e(x) — g = £ Y v, — 260 Y vigx) + Y v, x).  (23)

j=1 j=1 j=1 j=1
Let z = (y — x)/h. For x € [h, 1 — k], we have:
n n 1 —
>0 =Xk -0 = [ k(2 v+ o)
j=1 j=1 0 h
1
- n/ K(2)dz + 0(1) = n+ 0(1),
-1

and

n 1 _

> o) = ni! [ & (255 ) 0hay+ o)
=1

= n/jl K(2)g"(x + hz)dz + O(1)
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= n/jl K(z) {g"(x) + hz(g"(x)) + -+ %(gk(x))(r) + O(hr)} dz + 0(1)
= g () " (44 (091, () + o) + O, o9

where u,(K) # 0 since K is of order r. For x on the boundary, we use a right-skewed
boundary kernel on [0, 2] and a left-skewed kernel on [1 — &, 1], as discussed in Hall
and Marron (1990), Wand and Jones (1995), and Eubank (1999). For k =1 and
k = 2, plugging (24) into (23), we get:

30) = ng?() = 260 {0 + "¢, (0| + )

+ nr—}:r(gz(X))(’)u,(K) +o(nh") + O(1)

= (@)Y — 26(08" (0)) + o(nk) + O(1).

Y

Then:

n

B =Y 000) = 3 { S0 00~ 26025 (1) + o) + 0(1)

i=1

n*h" 1
= S [ (@00~ 26098 () + o) + O

Similarly:

W=>>w;—> w;=n"+ 0(n) — nh'K(0).

i=1 j=1 i=1

Thus, we have (12).

To proof (13), we present a lemma first.

Lemma 5.1. Under the same conditions as in Theorem 3.1, we have:

(a) g'D’g = O(n~'h*") + O(n73).

(b) g"{Ddiag(D)1} = O(n"'h") + O(n7?).
(©) tr{diag(D)?} = n~' + O(n~2).

(d) tr(D?) = n~" + () MK + o(n~?h7).

Proof. (a) First by the symmetry of D, we have:

g'D’g = g'D"Dg = (Dg)' Dg £ N'N, (25)
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where

Z?:l wy;8(x;) — Z_?:l wy;8(x;)
1 Z?:l w2jg(xz) - Z;:] ijg(xj)

Z?:l wnjg(xn) - Z_’;=l wnjg(xj)

Similar calculations as those in deriving the bias lead to:

Z_?:l wljg(xl) Z;l=1 wy;8(x;)
27:1 ijg(xZ) Z;:1 ijg(xj)
WN = —

Z;:l wnjg('xn) Z_’;=l wnjg(xj)

ng(x,) ng(x) + “-g (x)p, (K)

ng(x,) ng(x;) + " (x,) u, (K)

= : - . + o(nh") + O(1)

n8()/) - \ng(x,) + %60 (x, ), (K)

n

h" .
~H(K)g? + o(ni") + O(1),

r

2899

where g® = (g7 (x), ..., g7 (x,)", o(nh") = (o(nh®), ..., o(nh”))T and O(l) =
(0(1), ..., 0(1))". Using the fact that W = n> + O(nh™"), we have:

hr
N=— - 1, (K)g™ +o(n~'h") + O(n™?).
Therefore,
2 h2r 2 . 2 172
gD =t (K) 28" () +o(n” ' H) + O(n )
: i=1
h2r 1
= o i2(K) [ g7 (xPdx + o(n” H¥) + O(n ™)
n(r!)? 0
=0 '"h*") 4+ 0(n7d).
(b)

g’ {Ddiag(D)1} = (Dg)" {diag(D)1} = N' {diag(D)1}

2{_”

r 1
(RO ol 1)+ 06|
nr! w

21 Wi

Z' nwn'
J# Jj
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= w0 [ | o) + 0t

n—l

r

h 1
e (K) [0+ o(n” ) 4 0™

=0 '"n)+ 0(n?).

(¢) For any i=1,...,n, ¥ w; =" w;—K,(0)=n—h"K(0)+0().

Thus:
Z?:l (Zj#i wij)2 _ Z?:l (Z_/‘;éi wij)2

w2 (i quéi Wi 2

YiLi(n— h7'K(0) + O(1))?

[ (= 11K + 0()F
_ n’=2nh"'K(0) + nh2K*(0) + O(n?)
—ont = 2n3h1K(0) 4+ n2h2K2(0) 4+ O(n3)
=n"'+0n™?).

tr{diag(D)*} =

(d) First:

Y (e wi)® + X w)

2
i Zj#i wy;
w2 '

tr (Dz) = w2

= tr{diag(D)’} +

To calculate tr(D?), we only need to figure out the second term. Similar calculations
as in the proof of (12) lead to:

Yy Y W 1
w2 T w2

2": 2": wizj — nthz(O)}

i=1 j=1

= L{ Z <nh—1 /_11 K*(z)dz + o(nh_l)) — nh_sz(O)}

w2 g
= (*m) K3 + o(n*h7"). (26)
Therefore,

tr(D?) = n™" + (k) 'K |3 + o(n~2h7").

Proof of (13). The last four terms in (11) make up the variance. Using Lemma 5.1
and the fact that o*(y, — 3) = var(e®) — 2¢*, it is easy to see that:

var(Gysw) = 40°g" D’g + 4¢" {Ddiag(D)1}6”y; + ¢*tr{diag(D)’} (7, — 3) + 2¢*tr(D?)
= n"'var(e®) + (n*h)'C, + O(n~'h") + o(n2h7"),

where C, is defined in Theorem 3.1.
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Proof of (17).  As in Miiller et al. (2003), we write Gygy (h,,,) as the sum of three
parts, oysw (h,y) = Uy + U, + U, where

1 n
U, = W ZZ(Ei - ej)zwij’

i=1 j£i
1 n
Uy = 35 22 2206 — €)(8(x) — glx))wy,
-1
Uy = % ;leg(g(xi) — g(x;) wy;.

From (22), Uy is exactly the bias term. Thus, U; = O(h},,) = O(n>/**1). Since
w;; is symmetric:

2
U2 = W;EiAi’

where A; = 3" (g(x;) — g(x;))w;;. Similar to the proof of Lemma 5.1(a), we have
A= g(x;) X0 wy; — X w;8(x;) = O(nhy,,). Since W = n* + o(n?), we have:

opt
2 40> & 2 “1y2r
i=1

which implies that U, = O, (n~'/*h} ). We can further decompose U, as:

1 n
U=->e&+T-S5,

i=1

where S =Y, Y gew,;/Wand T =Y (X, w; — W/n)/W. From (26) it is
easy to see that:

20% & a0,
E(SY) = 3z 2w = 0(n™hy,).
i=1 j#i

which implies that S = 0,(n"'h,,/*) = 0,(n~>/®*D). Similar to the proof of
Lemma 5.1(c), we have ), ; w; — W/n = O(1). Thus:

B(T) = 200) = 007,

which implies that 7 = 0,(n™"). Therefore, 6% = n~' Y1 € + 0, (n~2/*D),

i=1"i
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