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Variance estimation in nonparametric
regression with jump discontinuities
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Variance estimation is an important topic in nonparametric regression. In this paper, we propose a pairwise
regression method for estimating the residual variance. Specifically, we regress the squared difference
between observations on the squared distance between design points, and then estimate the residual variance
as the intercept. Unlike most existing difference-based estimators that require a smooth regression function,
our method applies to regression models with jump discontinuities. Our method also applies to the situations
where the design points are unequally spaced. Finally, we conduct extensive simulation studies to evaluate
the finite-sample performance of the proposed method and compare it with some existing competitors.

Keywords: difference-based estimator; jump point; nonparametric regression; non-uniform design;
pairwise regression; residual variance

1. Introduction

Consider a nonparametric regression model with jump discontinuities

yi = g(xi) + h(xi) + εi, 1 ≤ i ≤ n, (1)

where yi are observations, g is a continuous function, h is a step function, and εi are independent
and identically distributed random errors with zero mean and variance σ 2. To be specific, we write
the step function h as

h(x) =
p∑

j=1

cjI(x > tj),

where p is the number of jumps, I(·) is the identify function with value 1 when x > tj and value
0 otherwise, and cj are the magnitudes of jumps at the jump points tj ∈ (0, 1), respectively. Note
that g + h is the mean function.

Model (1) has wide applications in statistical process control [18], piecewise linear regression
[1,9,10], image processing [8,12,17], and other related areas. It has also been applied to many
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real data examples such as the Nile river discharge data [2], the stock market return data [25],
the sea-level pressure data [19], and the infants growth data [14]. There is an abundant literature
for analysing model (1) including the detection and estimation of the number, positions, and
magnitudes of jump points [4,11,13,26,27].

This paper considers the estimation of the residual variance σ 2 in model (1). Needless to say, an
accurate estimate of σ 2 is very important in regression models with jump discontinuities. Usually,
one applies a two-step procedure to estimate σ 2 in such models. The first step is to estimate the
positions of change points and then divide the mean function into several continuous sections
accordingly. The second step is to estimate the residual variance within each individual section
and then use them to make a final estimate of σ 2. Note that one may apply the residual-based
methods [7] or apply the difference-based methods [13,26] to estimate the residual variance within
each individual section.

Apart from the above, Müller and Stadtmüller [14] proposed a single-step method for estimating
σ 2 in model (1). Consider the equally spaced design where xi = i/n, i = 1, . . . , n. Let

zk =
n−L∑
i=1

(yi+k − yi)
2

[2(n − L)] ,

where k = 1, . . . , L with L = L(n) ≥ 1. Under certain conditions on the mean function and the
bandwidth L, Müller and Stadtmüller showed that

E(zk) ≈ σ 2 + γ lk + δl2
k , (2)

where lk = k/(n − L), γ = ∑p−1
j=1 (cj+1 − cj)

2/2 is the amount of discontinuity in the data, and

δ = ∫ 1
0 [g′(x)]2 dx/2 + ∑p−1

j=1 g′(tj+1)(cj+1 − cj) is the measurement of the interaction between
continuous and discontinuous parts. By Equation (2), they fitted a quadratic regression that
regresses zk on lk and then estimate the residual variance as the intercept. Specifically, they
estimated σ 2 by

σ̂ 2
MS = 3

∑L
k=1(3L2 + 3L + 2 − 6(2L + 1)k + 10k2)zk

2L(L − 1)(L − 2)
. (3)

This method does not require an estimate of the positions of change points and is popular in
practice.

Note that zk only uses the first n − L pairs of observations for performing the quadratic regres-
sion. Ignoring the last L − k terms can make zk a less efficient representation for σ 2, especially
when L − k is large. In addition, Müller and Stadtmüller [14] required that min1≤i≤p−1(ti+1 − ti) ≥
2L/N for the possibility of change-points separation. In the special case when γ = 0, i.e. when
h(x) = 0, Tong et al. [23] have demonstrated that the least-squares estimator in Tong and Wang
[24] provides a smaller mean squared error (MSE) than σ̂ 2

MS. In addition, the equally spaced
design condition in Müller and Stadtmüller [14] is somewhat strong and has limited the practical
use of σ̂ 2

MS.
In this paper, we propose a pairwise regression method for estimating σ 2 in model (1). Specif-

ically, we regress the squared difference between observations on the squared distance between
design points, and then estimate the residual variance as the intercept. Our method generalizes
the existing methods from the following perspectives: (1) it does not require to estimate the
positions of change points compared with the two-step estimators in the literature; (2) it does
not require to estimate the discontinuity parameter γ compared with the single-step estimator in
Müller and Stadtmüller [14]; and (3) it also applies to the settings where the design points are
unequally spaced.
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532 W. Dai and T. Tong

The remainder of the paper is organized as follows. In Section 2.1, we review the difference-
based methods in estimating the residual variance in continuous nonparametric regression. In
Section 2.2, we propose a pairwise regression method that extends the least-squares estimator in
Tong and Wang [24] to unequally spaced designs. In Section 2.3, we further extend the proposed
pairwise regression method to adaptively estimate the residual variance in nonparametric regres-
sion with jump discontinuities. In Section 3, we conduct extensive simulation studies to evaluate
the finite-sample performance of the proposed method with some existing competitors. We then
apply the proposed method to a real data example in Section 4 and conclude the paper in Section 5
with some discussions.

2. Main results

2.1 Difference-based estimators

In the special case when h(x) = 0, model (1) reduces to

yi = g(xi) + εi, 1 ≤ i ≤ n. (4)

Under model (4), there are many difference-based methods in the literature for estimating σ 2.
Assume that 0 ≤ x1 ≤ · · · ≤ xn ≤ 1. von Neumann [16] and Rice [20] proposed a first-order
difference-based estimator

σ̂ 2
R = 1

2(n − 1)

n∑
i=2

(yi − yi−1)
2.

Gasser et al. [5] and Hall et al. [6] extended the idea and proposed some higher order difference-
based estimators. In addition, Müller et al. [15], Tong et al. [22], and Du and Schick [3] proposed
covariate-matched U-statistic estimators for the residual variance.

Apart from them, Tong and Wang [24] and Tong et al. [23] proposed a vari-
ation of the difference-based estimator in nonparametric regression. Let xi = i/n and
sk = ∑n

i=k+1 (yi − yi−k)
2/[2(n − k)]. Suppose that g has a bounded first derivative. Tong and

Wang [24] showed that for any fixed m = o(n)

E(sk) ≈ σ 2 + dkJ , k = 1, . . . , m, (5)

where dk = k2/n2 and J = ∫ 1
0 [g′(x)]2 dx/2. By Equation (5), they regressed sk on dk and then

estimated the residual variance as the intercept. Specifically, their least-squares estimator is
given as

σ̂ 2
TW =

m∑
k=1

wksk − β̂d̄w, (6)

where N1 = mn − m(m + 1)/2, wk = (n − k)/N1, d̄w = ∑m
k=1 wksk , and β̂ = ∑m

k=1 wksk

(dk − d̄w)/
∑m

k=1 wk(dk − d̄w)2.
Recall that σ̂ 2

TW is developed under model (4) with a continuous mean function. When h(x) �= 0,
σ̂ 2

TW may not perform well in model (1). To illustrate this, we consider the following regression
model with a single jump at t = 0.5

yi = g(xi) + cI(xi > 0.5) + εi, c > 0. (7)
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Figure 1. The estimated σ̂ 2 corresponding to different c values.

Assume that J and c are both finite values. We have

E(sk) = σ 2 + 1

2(n − k)

n∑
i=k+1

{[g(xi) + cI(xi > 0.5)]

− [g(xi−k) + cI(xi−k > 0.5)]}2

= σ 2 +
[

dkJ + o

(
k2

n2

)]
+

[
k

n
c2 + o

(
k

n

)]
.

Note that the bias owing to the jump, (k/n)c2, dominates the bias owing to the continuous function,
dkJ = (k/n)2J . This implies that σ̂ 2

TW may suffer a severe bias for estimating σ 2, especially when
c is large.

For a visualization of the bias pattern along with the c value, consider g(x) = 5x(1 − x) and
h(x) = cI(x > 0.5) with 0 < c < 20. We let n = 100, m = 10, and σ 2 = 1 throughout the sim-
ulations. The estimated variance against the c value is plotted in Figure 1. We observe that
σ̂ 2

TW increases rapidly as c increases. As a consequence, σ̂ 2
TW does not provide a satisfactory

performance in this example.

2.2 Pairwise regression

Recall that the least-squares estimator in Tong and Wang [24] only applies to the equally spaced
design. This has largely restricted the usage of their method in practice. In this section, we introduce
a pairwise regression method for estimating the residual variance that extends the least-squares
estimator from the equally spaced design to unequally spaced designs.

Let sij = (yj − yi)
2/2 be the half squared differences and dij = (xj − xi)

2 be the corresponding
squared distances for any 1 ≤ i < j ≤ n. Let d = o(1) be the bandwidth. We collect all dij values
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534 W. Dai and T. Tong

that satisfy dij ≤ d. For ease of notation, let A = {(i, j) : dij ≤ d, 1 ≤ i < j ≤ n} and N = #(A)

be the total number of pairs in A. Correspondingly, we collect the sij values for all (i, j) ∈ A.
Note that E(sij) = σ 2 + (g(xj) − g(xi))

2/2. When g is a linear function with slope ψ , we have
E(sij) = σ 2 + dijψ

2/2. In view of this, for the paired data {(dij, sij) : (i, j) ∈ A} with d = o(1),
we fit a simple linear regression model that regresses sij directly on dij

sij = α + dijβ + ηij. (8)

We then use the ordinary least-squares method to estimate σ 2 using the fitted intercept. This
leads to

σ̂ 2 = α̂ =
∑

A(S2 − S1dij)sij

NS2 − S2
1

, (9)

where S1 = ∑
A dij and S2 = ∑

A d2
ij. We refer to Equation (9) as a pairwise regression estimator.

Let cij = S2 − S1dij and y = (y1, . . . , yn)
T. The estimator (9) has a quadratic form σ̂ 2 =

yTMy/tr(M), where M is an n × n symmetric matrix with upper triangular elements

mij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
(i,j)∈Ak

cij

2
, 1 ≤ i = j = k ≤ n,

−cij

2
, (i, j) ∈ A,

0, otherwise,

where Ak = {(i, j) : i = k or j = k, (i, j) ∈ A} with k = 1, 2, . . . , n.
In what follows we draw some connection between the pairwise regression estimator σ̂ 2 and the

least-squares estimator σ̂ 2
TW. Let xi = i/n and d = m2/n2. Then N = N1 = mn − m(m + 1)/2 and

dij = dj−i. Also, it is easy to verify that S1 = Nd̄w, S2 = N
∑m

k=1 wkd 2
k ,

∑
A sij = N

∑m
k=1 wksk ,

and
∑

A dijsij = N
∑m

k=1 wkdksk . With the above equalities, we have

σ̂ 2 = S2
∑

A sij − S1
∑

A dijsij

NS2 − S2
1

=
∑m

k=1 wkd2
k

∑m
k=1 wksk − d̄w

∑m
k=1 wkdksk∑m

k=1 wkd 2
k − d̄2

w

=
m∑

k=1

wksk − d̄wβ̂

= σ̂ 2
TW.

This shows that when the design points are equally spaced, σ̂ 2 and σ̂ 2
TW are equivalent to each

other. From this point of view, we conclude that the pairwise regression estimator (9) generalized
the least-squares estimator σ̂ 2

TW from the equally spaced design to a general design.

2.3 Adaptive pairwise regression

As mentioned, most existing difference-based estimators were developed under model (4). In this
section, we show that the pairwise regression method in Section 2.2 can be readily extended to
model (1) with jump discontinuities.

To apply the pairwise regression to models with jump discontinuities, we revisit the simple
regression model presented in Equation (7). Let O = {(i, j) : 0.5 ∈ (xi, xj]} be the pairs of design
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Journal of Applied Statistics 535

points that cross the jump point. By Equation (9), we have

E(σ̂ 2) =
∑

A\O(S2 − S1dij)E(sij)

NS2 − S2
1

+
∑

O(S2 − S1dij)E(sij)

NS2 − S2
1

=
∑

A\O(S2 − S1dij)(σ
2 + O(m2/n2))

NS2 − S2
1

+
∑

O(S2 − S1dij)(σ
2 + c2/2 + O(m/n))

NS2 − S2
1

=
∑

A(S2 − S1dij)

NS2 − S2
1

σ 2 +
∑

O(S2 − S1dij)

NS2 − S2
1

(
c2

2
+ O

(m

n

))

= σ 2 +
∑

O(S2 − S1dij)

NS2 − S2
1

c2

2
+ O

(
m2

n2

)
, (10)

where ∑
A(S2 − S1dij)

NS2 − S2
1

= 1 and

∑
O(S2 − S1dij)

NS2 − S2
1

= O
(m

n

)
.

By Equation (10), to obtain a good estimate of σ 2, it is clear that the pairs in O should be excluded
from the regression to eliminate the bias. Otherwise, given that the quantity c is large, the extra
bias introduced by the jump can be very severe.

In what follows, we examine how excluding the pairs in O takes effect on the MSE of the
estimator. We will also suggest ways to exclude certain pairs of data from the pairwise regres-
sion. Let zij = yj − yi for any 1 ≤ i < j ≤ n. For d = o(1), we have E(zij) → 0 for (i, j) ∈ O and
E(zij) → c for (i, j) ∈ A\O. Whereas for any (i, j) ∈ A, var(zij) = 2σ 2. To visualize the discrep-
ancy between the two groups of zij, we consider c = 0, 2 and 5 for the example in Section 2.1.
All other settings are kept the same as before except that now σ = 0.5.

We plot the histograms of the simulated zij values in the first column of Figure 2. When the mean
function is continuous (i.e. c = 0), the histogram is unimodal and almost symmetric around zero.
When c increases, the histogram tends to be right-skewed and eventually separates to two disjoint
sections, one consisting of the pairs without jump and the other consisting of the pairs with jump.
To eliminate the impact of the jump on the variance estimation, we can treat the extremely large
|zij| values, or correspondingly the extremely large sij values, as outliers and exclude them in the
pairwise regression.

Ideally, none of the zij values should be detected as outliers when the mean function is continu-
ous. When c is non-zero, to reduce the bias or essentially to gain a small MSE we may wish to drop
the pairs that cross the jump point. As an illustration, we also plot in Figure 2 the simulated MSE
against the number of pairs dropped for the three c values, respectively. It suggests to drop few
pairs for c = 0, drop around 40 pairs for c = 2, and drop around 55 pairs for c = 5 for estimating
the residual variance with a minimum MSE. Finally, it is interesting to point out that for an equally
spaced design with m = 10, there is a total of m(m + 1)/2 = 55 pairs across the jump point.

In what follows, we suggest two practical rules that identify certain zij values as outliers and
then exclude them from the pairwise regression. The resulting methods are referred to as adaptive
pairwise regression estimators.

2.3.1 Box plot method

The first method uses the box plot to detect certain zij values as outliers. Let QL({zij}) and QU({zij})
denote the lower quartile and the upper quartile of the observed zij values within the bandwidth,
respectively. Follow the form of Sim et al. [21], we define LB = QL({zij}) − C · IQR and UB =
QU({zij}) + C · IQR, where IQR = QU({zij}) − QL({zij}) is the interquartile range and C is an
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Figure 2. The histogram of zij and the change of MSE against the number of pairs dropped, where c = 0, 2
and 5, respectively.

adjustment factor. Here, we assign a value of 2 or 3 to C. We then identify zij as an outlier if
zij ∈ (−∞, LB) or zij ∈ (UB, ∞). We refer to the estimator by the box plot method as σ̂ 2

box.

2.3.2 Cross-validation method

Note that the bandwidth d is also critical to the variance estimation. Our second method uses a
V -fold cross-validation (CV) approach to simultaneously choose the bandwidth d and the adjust-
ment factor C. Specifically, we first split the whole data set into V disjoint subsamples, S1, . . . , SV

as in Tong and Wang [24]. Second, for given d and C, we estimate σ 2 by σ̂ 2
v (d, C) based on the

subsample ∪i �=vSi and the pairs with dij ≤ d and zij ∈ [LB(C), UB(C)]. Finally, we choose the
optimal tuning parameters d and C that minimize

CV(d, C) =
V∑

v=1

[σ̂ 2(d, C) − σ̂ 2
v (d, C)]2,

where σ̂ 2(d, C) is the estimate of σ 2 based on the whole data set with pairs dij ≤ d and zij ∈
[LB(C), UB(C)]. We refer to the estimator by the CV method as σ̂ 2

CV.
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3. Simulations

In this section, we conduct extensive simulation studies to evaluate the finite-sample performance
of the proposed estimators and compare them with some existing competitors.

3.1 Equidistant design

The first study assumes an equally spaced design. Specifically, let xi = i/n with i = 1, . . . , n. We
consider the following four estimators for comparison: σ̂ 2

box, σ̂ 2
CV, σ̂ 2

MS, and σ̂ 2
TW. We consider a

total of nine mean functions with combinations gi + hj from the following functions:

g1(x) = 5x(1 − x),

g2(x) = 5exp(1 − x),

g3(x) = 5 sin(2x),

and

h1(x) = 4I

(
x >

√
2

2

)
,

h2(x) = 3I

(
x >

√
2

4

)
+ 4I

(
x >

√
2

2

)
,

h3(x) = 0.

For each mean function, we consider n = 30, 100, and 500, ranging from small to large
sample sizes, respectively, and σ = 0.2, 0.5, 1, 2, and 5, ranging from small to large vari-
ances, respectively. Finally, for given n and σ , we simulate the random errors εi independently
from N(0, σ 2).

For each simulation setting, we generate observations and compute the estimators σ̂ 2
TW(m),

σ̂ 2
MS(L), σ̂ 2

box(d, C), and σ̂ 2
cv. Note that the bandwidth L in Müller and Stadtmüller [14] is not very

sensitive to the estimation of σ 2. We consider both Ls = ms = n1/2 and Lt = mt = n1/3 as in Tong
and Wang [24]. This leads to the corresponding d values as ds = (ms/n)2 and dt = (mt/n)2. Then
together with C = 2 and 3, we have four different estimates for σ̂ 2

box. Recall that the CV estimator,
σ̂ 2

cv, aims to figure out the best combination between d and C. We consider leave-one-out CV for
n = 30, and 10-fold CV for n = 100 and n = 500, throughout the simulations.

We repeat the process 1000 times and compute the following relative MSEs, MSE/MSEopt,
for each method. Here, MSEopt = n−1(γ4 − 1)σ 4 is specified as the optimal efficiency bound of
all root-n consistent estimators of σ 2, and γ4 = E(ε4)/σ 4. For normal errors, we have γ4 = 3
and MSEopt = 2σ 4/n. We observe that negative estimates indicated by Tong and Wang [24] and
Müller and Stadtmüller [14] do appear in certain simulations, though very rarely. We replace the
negative estimates with zero when calculating the relative MSEs.

3.2 Non-equidistant design

This section carries out simulation studies for unequally spaced designs. We generate design
points from the beta distribution Beta(3, 3). This is a bell shaped distribution on [0,1] with a mode
at 0.5. Also for simplicity, we consider only three mean functions g3 + hi, where the first two
functions are discontinuous and the last one is continuous. All other settings are kept the same as
those in Section 3.1.
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538 W. Dai and T. Tong

Finally, recall that Müller and Stadtmüller [14] and Tong and Wang [24] do not apply to
unequally spaced designs. We thus omit both the estimators but add in the pairwise regression
estimator σ̂ 2 in Equation (9) for comparison. Then correspondingly, we compute the relative
MSEs for σ̂ 2, σ̂ 2

box(d, C), and σ̂ 2
cv, respectively.

3.3 Simulation results

Tables 1–6 list the relative MSEs for the mean functions with jump points, respectively, under
the equidistant design. In general, we observe that MSE(σ̂ 2

CV) � MSE(σ̂ 2
box) < MSE(σ̂ 2

MS) <

MSE(σ̂ 2
TW) for small and moderate σ values, and MSE(σ̂ 2

CV) � MSE(σ̂ 2
box) � MSE(σ̂ 2

TW) <

MSE(σ̂ 2
MS) for large σ values. These results show that the proposed adaptive estimators out-

perform the existing estimators in the presence of jump discontinuities. We also observe that the
comparative performance of σ̂ 2

box(dt , 2), σ̂ 2
box(dt , 3), σ̂ 2

box(ds, 2), and σ̂ 2
box(ds, 3) depends on the

smoothness and continuity of the mean function, the sample size, and the signal-to-noise ratio. As
reported in Tong and Wang [24], σ̂ 2

box(ds, ·) may not perform well when the sample size is small.
As a compromise, σ̂ 2

CV performs well in most settings.
In contrast, we list in Tables 7–9 the relative MSEs for the continuous mean functions f7(x)

through f9(x), under the equidistant design. We observe that σ̂ 2
box, σ̂ 2

CV, and σ̂ 2
TW perform very

similar under various settings. More specifically, we observe that for a continuous mean function,
very few zij values were detected from simulations as outliers. As a consequence, both σ̂ 2

box(dt , 2)

and σ̂ 2
box(dt , 3) perform essentially the same as σ̂ 2

TW(mt), and both σ̂ 2
box(ds, 2) and σ̂ 2

box(ds, 3)

perform essentially the same as σ̂ 2
TW(ms). Apart from them, σ̂ 2

MS does not provide a comparable
performance. This coincides the observation in Tong et al. [23] that σ̂ 2

MS is worse than σ̂ 2
TW when

the mean function is continuous.
Finally, we list in Tables 10–12 the relative MSEs for the settings with non-equidistant designs.

Similarly as above, we observe that σ̂ 2
box perform better than σ̂ 2 in the presence of jump discon-

tinuities, and their performance are similar when the mean function is continuous. Meanwhile,
σ̂ 2

CV performs very well in most settings, especially when the sample size is small.

Table 1. Relative MSEs of various estimators for the mean function f1(x) = g1(x) + h1(x), under
equidistant design.

σ̂ 2
MS σ̂ 2

TW σ̂ 2
box

n σ Lt Ls mt ms (dt , 2) (dt , 3) (ds, 2) (ds, 3) σ̂ 2
CV

30 0.2 65.5 34.6 513 1368 1.64 1.60 1.67 1.79 1.62
0.5 20.8 9.58 16.8 39.0 2.41 7.78 6.12 24.4 2.82
1 13.2 4.94 2.87 4.15 2.48 2.83 3.40 4.13 2.87
2 11.0 3.61 1.66 1.54 1.63 1.66 1.49 1.53 1.47
5 10.3 3.23 1.49 1.26 1.51 1.50 1.25 1.26 1.30

100 0.2 14.3 12.0 308 939 1.37 1.38 1.22 1.21 1.25
0.5 5.38 3.76 9.75 26.0 1.41 2.80 1.39 5.22 1.33
1 4.05 2.52 2.02 2.92 1.71 1.98 1.99 2.82 1.59
2 3.73 2.19 1.43 1.34 1.37 1.44 1.28 1.34 1.26
5 3.64 2.10 1.36 1.20 1.35 1.36 1.18 1.20 1.19

500 0.2 3.85 3.92 130 777 1.24 1.22 1.11 1.11 1.17
0.5 2.36 1.79 4.46 20.8 1.25 1.43 1.15 1.92 1.20
1 2.15 1.47 1.41 2.29 1.25 1.38 1.35 2.13 1.32
2 2.10 1.38 1.23 1.17 1.22 1.23 1.11 1.17 1.13
5 2.08 1.36 1.22 1.10 1.24 1.22 1.13 1.11 1.16
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Table 2. Relative MSEs of various estimators for the mean function f2(x) = g2(x) + h1(x), under
equidistant design.

σ̂ 2
MS σ̂ 2

TW σ̂ 2
box

n σ Lt Ls mt ms (dt , 2) (dt , 3) (ds, 2) (ds, 3) σ̂ 2
CV

30 0.2 61.1 23.2 526 1509 1.78 1.75 3.49 15.2 2.71
0.5 20.8 9.40 17.1 42.6 1.90 5.64 4.50 26.7 2.66
1 13.2 5.05 2.89 4.38 2.35 2.80 3.28 4.28 3.04
2 11.0 3.65 1.66 1.55 1.64 1.66 1.49 1.55 1.53
5 10.3 3.24 1.49 1.26 1.51 1.50 1.26 1.26 1.27

100 0.2 14.2 12.3 309 961 1.39 1.40 1.28 1.27 1.37
0.5 5.36 3.81 9.81 26.5 1.39 2.29 1.25 3.73 1.28
1 4.04 2.52 2.02 2.95 1.67 1.95 1.86 2.79 1.58
2 6.72 2.20 1.43 1.34 1.40 1.44 1.28 1.34 1.28
5 3.64 2.10 1.36 1.20 1.36 1.37 1.18 1.20 1.20

500 0.2 3.84 3.94 130 780 1.24 1.22 1.12 1.13 1.18
0.5 2.36 1.79 4.47 20.9 1.24 1.39 1.14 1.62 1.22
1 2.15 1.47 1.41 2.30 1.25 1.38 1.32 2.10 1.32
2 2.10 1.38 1.23 1.17 1.22 1.23 1.11 1.17 1.13
5 2.08 1.36 1.22 1.11 1.24 1.22 1.13 1.11 1.16

Table 3. Relative MSEs of various estimators for the mean function f3(x) = g3(x) + h1(x), under
equidistant design.

σ̂ 2
MS σ̂ 2

TW σ̂ 2
box

n σ Lt Ls mt ms (dt , 2) (dt , 3) (ds, 2) (ds, 3) σ̂ 2
CV

30 0.2 61.4 22.7 506 1297 1.70 1.95 76.1 1427 1.69
0.5 20.6 9.06 16.6 37.2 3.91 11.7 24.7 37.0 4.51
1 13.2 4.90 2.86 4.05 2.60 2.83 3.81 4.05 2.71
2 11.0 3.61 1.66 1.53 1.64 1.66 1.50 1.53 1.50
5 10.3 3.23 1.49 1.26 1.51 1.50 1.26 1.26 1.30

100 0.2 14.3 12.0 306 927 1.39 1.38 1.28 1.27 1.35
0.5 5.39 3.78 9.72 25.7 1.45 3.34 1.81 9.95 1.41
1 4.05 2.52 2.01 2.90 1.72 1.98 2.15 2.86 1.60
2 3.73 2.20 1.43 1.34 1.40 1.44 1.29 1.34 1.26
5 3.64 2.10 1.36 1.20 1.35 1.36 1.18 1.20 1.19

500 0.2 3.85 3.93 130 775 1.23 1.22 1.11 1.12 1.17
0.5 2.36 1.79 4.46 20.7 1.25 1.44 1.16 2.33 1.23
1 2.15 1.47 1.41 2.29 1.25 1.38 1.38 2.15 1.33
2 2.10 1.38 1.23 1.17 1.22 1.23 1.11 1.17 1.13
5 2.08 1.36 1.22 1.11 1.24 1.22 1.13 1.11 1.16

4. Case study

For illustration, we apply the proposed methods to a real data example. The data were reported in
Cobb [2] on the annual volume of discharge in the Nile River from 1895 to 1934. In Figure 3, we
find several observations with large variation and we suspect that the mean function might contain
jump discontinuities. For this data with n = 40 observations, we choose Lt = mt = 
n1/3� = 3
and Ls = ms = 
n1/2� = 6 for σ̂ 2

MS and σ̂ 2
TW, respectively. Here, 
a� denotes the largest inte-

ger smaller than or equal to a. For the proposed methods, correspondingly we choose dt =
(mt/n)2 = 0.0752 and ds = (ms/n)2 = 0.152. The estimated residual variances are as follows:
σ̂ 2

MS(Lt) = 126.9, σ̂ 2
MS(Ls) = 47.7; σ̂ 2

TW(mt) = 119.9 and σ̂ 2
TW(ms) = 144.8; σ̂ 2

box(dt , 2) = 126.1,

D
ow

nl
oa

de
d 

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g]
 a

t 0
6:

35
 2

3 
Fe

br
ua

ry
 2

01
5 



540 W. Dai and T. Tong

Table 4. Relative MSEs of various estimators for the mean function f4(x) = g1(x) + h2(x), under
equidistant design.

σ̂ 2
MS σ̂ 2

TW σ̂ 2
box

n σ Lt Ls mt ms (dt , 2) (dt , 3) (ds, 2) (ds, 3) σ̂ 2
CV

30 0.2 88.2 47.3 1217 3177 1.69 5.45 3177 3177 1.69
0.5 24.6 12.3 36.1 86.7 9.65 24.2 86.7 86.7 18.3
1 14.3 5.80 4.39 7.48 3.88 4.30 7.41 7.48 4.52
2 11.3 3.85 1.84 1.84 1.79 1.84 1.81 1.84 1.71
5 10.3 3.28 1.52 1.28 1.53 1.52 1.28 1.29 1.30

100 0.2 20.3 16.0 309 2274 1.35 1.15 1.23 1.28 1.29
0.5 6.51 4.62 9.75 60.8 1.37 1.18 4.37 29.0 2.09
1 1.33 2.76 1.94 5.21 1.34 1.33 4.00 5.17 2.24
2 3.80 2.27 1.34 1.51 1.36 1.17 1.44 1.51 1.34
5 3.65 2.12 1.32 1.20 1.38 1.22 1.19 1.20 1.19

500 0.2 4.82 5.52 318 1902 1.24 1.22 1.13 1.13 1.17
0.5 2.51 2.08 9.37 49.8 1.28 2.10 1.39 7.98 1.37
1 2.18 1.56 1.74 4.13 1.34 1.68 2.23 3.92 1.56
2 2.10 1.41 1.26 1.29 1.23 1.26 1.18 1.29 1.18
5 2.08 1.36 1.22 1.11 1.24 1.22 1.12 1.11 1.16

Table 5. Relative MSEs of various estimators for the mean function f5(x) = g2(x) + h2(x), under
equidistant design.

σ̂ 2
MS σ̂ 2

TW σ̂ 2
box

n σ Lt Ls mt ms (dt , 2) (dt , 3) (ds, 2) (ds, 3) σ̂ 2
CV

30 0.2 82.8 30.0 1270 3770 1.94 4.73 3739 3770 1.93
0.5 24.5 11.5 37.5 102 6.38 21.7 93.4 102 22.0
1 14.3 5.78 4.47 8.39 3.70 4.36 7.95 8.37 5.64
2 11.3 3.85 1.84 1.89 1.80 1.84 1.82 1.89 1.72
5 10.3 3.28 1.52 1.28 1.53 1.52 1.27 1.29 1.30

100 0.2 20.2 16.0 751 2358 1.43 1.44 1.34 1.66 1.42
0.5 6.50 4.66 21.3 63.0 1.78 5.65 3.28 25.8 1.80
1 4.33 2.76 2.80 5.35 2.11 2.72 3.70 5.26 2.23
2 3.79 2.27 1.50 1.51 1.45 1.50 1.43 1.51 1.35
5 3.65 2.12 1.37 1.20 1.36 1.37 1.19 1.20 1.20

500 0.2 4.82 5.55 318 1913 1.24 1.23 1.14 1.15 1.20
0.5 2.51 2.09 9.38 50.2 1.28 1.98 1.30 6.16 1.34
1 2.18 1.56 1.74 4.15 1.34 1.68 2.09 3.89 1.52
2 2.10 1.41 1.26 1.29 1.23 1.26 1.18 1.29 1.19
5 2.08 1.36 1.22 1.11 1.24 1.22 1.12 1.11 1.17

σ̂ 2
box(dt , 3) = 119.9, σ̂ 2

box(ds, 2) = 137.2, σ̂ 2
box(ds, 3) = 144.8, and σ̂ 2

CV = 119.9. We note that for
a standard with C = 3, no outliers were identified so that σ̂ 2

box(dt , 3) = σ̂ 2
TW(mt) = 119.9 and

σ̂ 2
box(ds, 3) = σ̂ 2

TW(ms) = 144.8. In addition, the CV method suggests to take C = 3 with a band-
width at dt and that results in the variance estimate as 119.9. Recall that the suggested value of
σ 2 is 125 in Cobb [2]. We conclude that our pairwise regression method performs at least as well
as the least-squares estimator σ 2

TW. Nevertheless, the estimator σ 2
MS is very sensitive to the choice

of the bandwidth and so is less reliable.
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Table 6. Relative MSEs of various estimators for the mean function f6(x) = g3(x) + h2(x), under
equidistant design.

σ̂ 2
MS σ̂ 2

TW σ̂ 2
box

n σ Lt Ls mt ms (dt , 2) (dt , 3) (ds, 2) (ds, 3) σ̂ 2
CV

30 0.2 82.9 30.9 1190 2902 4.47 117 2902 2902 12.2
0.5 24.3 11.5 35.5 79.7 15.8 30.7 79.7 79.7 23.1
1 14.3 5.78 4.35 7.07 4.11 4.32 7.06 7.07 4.21
2 11.3 3.85 1.84 1.82 1.81 1.84 1.79 1.82 1.70
5 10.3 3.28 1.52 1.28 1.54 1.52 1.28 1.29 1.30

100 0.2 20.3 15.9 740 2229 1.41 1.40 1.30 9.69 1.39
0.5 6.52 4.64 21.1 59.7 2.41 8.89 9.79 45.3 2.47
1 4.34 2.76 2.78 5.14 2.25 2.76 4.30 5.13 2.26
2 3.80 2.27 1.49 1.50 1.46 1.50 1.45 1.50 1.33
5 3.66 2.12 1.37 1.20 1.35 1.37 1.18 1.20 1.19

500 0.2 4.83 5.53 317 1895 1.23 1.22 1.12 1.23 1.18
0.5 2.51 2.09 9.36 49.7 1.28 2.19 1.56 10.6 1.39
1 2.18 1.56 1.74 4.12 1.35 1.68 2.34 3.95 1.56
2 2.10 1.41 1.26 1.29 1.23 1.26 1.18 1.29 1.18
5 2.08 1.36 1.22 1.11 1.24 1.22 1.12 1.11 1.16

Table 7. Relative MSEs of various estimators for the mean function f7(x) = g1(x) + h3(x), under
equidistant design.

σ̂ 2
MS σ̂ 2

TW σ̂ 2
box

n σ Lt Ls mt ms (dt , 2) (dt , 3) (ds, 2) (ds, 3) σ̂ 2
CV

30 0.2 10.2 3.54 1.53 1.64 1.56 1.53 1.72 1.64 1.58
0.5 10.1 3.21 1.49 1.27 1.52 1.49 1.26 1.27 1.39
1 10.1 3.17 1.48 1.25 1.51 1.49 1.24 1.25 1.40
2 10.1 3.16 1.48 1.24 1.51 1.49 1.25 1.25 1.24
5 10.1 3.16 1.48 1.24 1.51 1.49 1.25 1.25 1.29

100 0.2 3.65 2.10 1.35 1.21 1.34 1.36 1.21 1.21 1.25
0.5 3.64 2.08 1.35 1.19 1.35 1.36 1.18 1.19 1.18
1 3.63 2.08 1.35 1.19 1.35 1.36 1.18 1.19 1.17
2 3.63 2.08 1.35 1.19 1.35 1.36 1.18 1.19 1.19
5 3.63 2.08 1.35 1.19 1.35 1.36 1.18 1.19 1.18

500 0.2 2.08 1.35 1.22 1.11 1.24 1.22 1.12 1.11 1.17
0.5 2.08 1.35 1.22 1.11 1.25 1.22 1.14 1.11 1.16
1 2.08 1.35 1.22 1.12 1.25 1.22 1.14 1.12 1.16
2 2.08 1.35 1.22 1.12 1.25 1.22 1.15 1.12 1.10
5 2.08 1.35 1.22 1.12 1.25 1.22 1.15 1.12 1.15

5. Discussion

In this paper, we first introduced a pairwise regression method for estimating σ 2 in nonparametric
regression models with continuous mean function. We further extended the pairwise regression
method to model (1) with jump discontinuities via adaptation. As already mentioned in Section 1,
the proposed adaptive method generalizes the existing methods from different points of view and
has several important merits. In particular, our adaptive method turns out to be superior for its
flexibility in eliminating the effect of potential jumps in the mean function and for its applicabil-
ity in both equally and unequally design settings. In addition, compared with the residual-based
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Table 8. Relative MSEs of various estimators for the mean function f8(x) = g2(x) + h3(x), under
equidistant design.

σ̂ 2
MS σ̂ 2

TW σ̂ 2
box

n σ Lt Ls mt ms (dt , 2) (dt , 3) (ds, 2) (ds, 3) σ̂ 2
CV

30 0.2 11.1 9.56 1.62 2.23 1.74 1.64 2.43 2.23 1.68
0.5 10.3 3.75 1.50 1.34 1.49 1.50 1.36 1.34 1.46
1 10.2 3.27 1.48 1.26 1.49 1.48 1.27 1.26 1.37
2 10.1 3.19 1.48 1.25 1.51 1.48 1.26 1.25 1.23
5 10.1 3.17 1.48 1.24 1.51 1.48 1.25 1.25 1.29

100 0.2 3.68 2.56 1.37 1.25 1.35 1.38 1.33 1.25 1.35
0.5 3.63 2.11 1.36 1.19 1.34 1.36 1.17 1.19 1.18
1 3.63 2.08 1.36 1.19 1.34 1.36 1.18 1.19 1.17
2 3.63 2.08 1.35 1.19 1.35 1.36 1.18 1.19 1.20
5 3.63 2.08 1.35 1.19 1.35 1.36 1.18 1.19 1.17

500 0.2 2.08 1.36 1.22 1.12 1.24 1.22 1.11 1.12 1.18
0.5 2.08 1.35 1.22 1.12 1.24 1.22 1.14 1.12 1.16
1 2.08 1.35 1.22 1.12 1.24 1.22 1.15 1.12 1.16
2 2.08 1.35 1.22 1.12 1.24 1.22 1.15 1.12 1.09
5 2.08 1.35 1.22 1.12 1.25 1.22 1.15 1.12 1.16

Table 9. Relative MSEs of various estimators for the mean function f9(x) = g3(x) + h3(x), under
equidistant design.

σ̂ 2
MS σ̂ 2

TW σ̂ 2
box

n σ Lt Ls mt ms (dt , 2) (dt , 3) (ds, 2) (ds, 3) σ̂ 2
CV

30 0.2 10.4 8.34 1.61 2.26 1.68 1.61 2.48 2.26 1.70
0.5 10.1 3.48 1.50 1.32 1.54 1.50 1.34 1.32 1.44
1 10.1 3.21 1.49 1.26 1.51 1.50 1.24 1.26 1.42
2 10.1 3.17 1.48 1.25 1.51 1.49 1.24 1.25 1.24
5 10.1 3.16 1.48 1.24 1.50 1.49 1.24 1.25 1.28

100 0.2 3.70 2.30 1.35 1.24 1.36 1.36 1.29 1.24 1.34
0.5 3.65 2.09 1.35 1.20 1.34 1.35 1.19 1.20 1.19
1 3.64 2.08 1.35 1.19 1.34 1.35 1.18 1.19 1.18
2 3.64 2.08 1.35 1.19 1.34 1.36 1.18 1.19 1.19
5 3.63 2.08 1.35 1.19 1.35 1.36 1.18 1.19 1.18

500 0.2 2.08 1.36 1.22 1.11 1.24 1.22 1.10 1.11 1.16
0.5 2.08 1.35 1.22 1.11 1.25 1.22 1.13 1.11 1.16
1 2.08 1.35 1.22 1.11 1.25 1.22 1.14 1.12 1.16
2 2.08 1.35 1.22 1.12 1.25 1.22 1.14 1.12 1.09
5 2.08 1.35 1.22 1.12 1.25 1.22 1.15 1.12 1.15

estimators, our method provides a direct way to estimate the residual variance without the esti-
mations of mean function and jump points. In conclusion, we recommend to use the estimator
σ̂ 2

CV in practice. More work, though, is needed for demonstrating the theoretical results of our
proposed estimators.

The proposed method can be readily extended to higher-dimensional regression models.
Consider, for instance, the following bivariate nonparametric regression model with jump
discontinuities

yi = g∗(x1i, x2i) + h∗(x1i, x2i) + εi, 1 ≤ i ≤ n.
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Table 10. Relative MSEs of various estimators for the mean function
f3(x) = g3(x) + h1(x), under non-equidistant design.

σ̂ 2 σ̂ 2
box

n σ dt ds (dt , 2) (dt , 3) (ds, 2) (ds, 3) σ̂ 2
CV

30 0.2 1174 2875 34.7 34.7 659 1647 50.2
0.5 35.2 81.6 7.41 21.7 49.1 76.4 8.94
1 4.28 7.45 3.74 4.17 6.89 7.40 4.16
2 1.85 1.92 1.81 1.85 1.88 1.92 1.84
5 1.56 1.35 1.57 1.57 1.35 1.35 1.42

100 0.2 654 1726 1.60 1.61 1.57 1.59 1.57
0.5 18.8 46.2 1.64 4.31 2.30 16.7 1.72
1 2.63 4.23 1.99 2.54 2.97 4.12 2.00
2 1.54 1.50 1.50 1.54 1.45 1.50 1.43
5 1.45 1.31 1.45 1.45 1.30 1.31 1.36

500 0.2 252 1233 1.43 1.44 1.33 1.33 1.40
0.5 7.90 33.1 1.43 1.80 1.36 3.48 1.41
1 1.86 3.34 1.52 1.82 1.94 3.17 1.58
2 1.46 1.44 1.44 1.46 1.36 1.43 1.44
5 1.43 1.30 1.43 1.43 1.30 1.30 1.38

Table 11. Relative MSEs of various estimators for the mean function
f6(x) = g3(x) + h2(x), under non-equidistant design.

σ̂ 2 σ̂ 2
box

n σ dt ds (dt , 2) (dt , 3) (ds, 2) (ds, 3) σ̂ 2
CV

30 0.2 2435 6727 624 827 6411 6701 853
0.5 70.0 182 43.1 60.7 181 182 62.4
1 6.99 14.4 6.38 6.94 14.4 14.4 7.06
2 2.17 2.59 2.14 2.17 2.55 2.59 2.47
5 1.61 1.43 1.62 1.61 1.42 1.43 1.51

100 0.2 1477 4583 1.60 1.62 121 296 1.59
0.5 41.0 121 4.98 20.9 47.4 103 5.82
1 4.28 9.15 3.41 4.19 8.12 9.13 3.71
2 1.72 1.87 1.66 1.72 1.79 1.87 1.67
5 1.48 1.34 1.46 1.48 1.32 1.34 1.37

500 0.2 567 3458 1.44 1.45 1.32 1.33 1.40
0.5 16.1 90.2 1.56 3.93 3.01 27.5 1.66
1 2.41 6.97 1.75 2.35 4.20 6.77 1.89
2 1.51 1.68 1.46 1.51 1.52 1.68 1.53
5 1.44 1.31 1.43 1.44 1.29 1.31 1.38

We can define dij by dij = √
(x1i − x1j)2 + (x2i − x2j)2 or by dij = |x1i − x1j| + |x1i − x1j|, and

then proceed the estimation similarly as in Sections 2.2 and 2.3. Further research is necessary
to investigate the practical rules for the corresponding adaptive method as well as to evaluate its
finite-sample performance. Furthermore, recall that the proposed method in this paper is restricted
to a constant residual variance assumption. As this may not be realistic in applications, it should
be of interest to propose new pairwise regression methods for estimating the variance function in
regression models with jump discontinuities.
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Table 12. Relative MSEs of various estimators for the mean function
f9(x) = g3(x) + h3(x), under non-equidistant design.

σ̂ 2 σ̂ 2
box

n σ dt ds (dt , 2) (dt , 3) (ds, 2) (ds, 3) σ̂ 2
CV

30 0.2 2.29 3.55 2.21 2.28 3.39 3.54 2.22
0.5 1.63 1.51 1.62 1.63 1.49 1.51 1.52
1 1.56 1.35 1.57 1.56 1.34 1.35 1.40
2 1.54 1.31 1.55 1.54 1.30 1.31 1.38
5 1.53 1.30 1.55 1.54 1.30 1.30 1.29

100 0.2 1.58 1.50 1.56 1.58 1.47 1.50 1.53
0.5 1.48 1.33 1.47 1.48 1.33 1.33 1.38
1 1.46 1.32 1.45 1.46 1.32 1.32 1.38
2 1.46 1.32 1.44 1.46 1.32 1.32 1.38
5 1.45 1.32 1.44 1.45 1.33 1.32 1.38

500 0.2 1.43 1.32 1.43 1.43 1.30 1.32 1.37
0.5 1.43 1.30 1.43 1.43 1.30 1.30 1.38
1 1.43 1.30 1.43 1.43 1.30 1.30 1.38
2 1.43 1.30 1.43 1.43 1.31 1.30 1.38
5 1.43 1.29 1.43 1.43 1.31 1.29 1.38
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Figure 3. The Nile discharge data from 1895 to 1934.
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