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1. INTRODUCTION

Peter D. Lax has made seminal contributions to several key areas of
mathematics. His contributions are part of a long tradition where the
interaction between mathematics and physics is at the core. Physics of-
fers challenging problems that require intuition to solve. Mathematics
can reveal deep inner strucures and properties, and rigorous proofs pro-
vide solid foundations for our knowledge. John von Neumann, who had
considerable influence on Lax, concluded in 1945 that1 “really efficient
high-speed computing devices may, in the field of non-linear partial dif-
ferential equations as well as in many other fields which are now difficult
or entirely denied of access, provide us with those heuristic hints which
are needed in all parts of mathematics for genuine progress.” Lax stated
in 1986 that2 “[a]pplied and pure mathematics are more closely bound
together today than any other time in the last 70 years”. It is in this spirit
that Lax has worked.

Peter D. Lax

Here we will focus on one important area of math-
ematics were Peter Lax has made outstanding con-
tributions that continue to dominate the field. We
emphasis the applied aspects with wide ranging con-
sequences for our modern society, thereby under-
playing their intrinsic mathematical beauty. Unfor-
tunately we will not discuss his fundamental contri-
butions to classical analysis and scattering theory, in
particular Lax–Phillips scattering theory, nor his con-
tributions to the theory of solitons, where he intro-

duced the fundamental Lax pair, which has had extensive consequences
in mathematics, physics and technology.

The topic we will discuss is the theory of shock waves. Shock waves
appear in many phenomena in everyday life. Most easily explained are
shock waves coming from airplanes moving at supersonic speed, or from
explosions, but shocks also appear in phenomena involving much smaller
velocities. Of particular interest is the flow of hydrocarbons in a porous
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1Collected works of John v. Neumann, vol. V, 1963, p. 1–32.
2Mathematics and its applications, The Mathematical Intelligenzer 8 (1986) 14–17.
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medium, or to put it more concretely, the flow of oil in an oil reservoir. It
is well-known that oil and water do not mix, and the interface between
regions with oil and regions with water form what is mathematically de-
fined as a shock. The dynamics of the shocks are vital in the exploita-
tion of hydrocarbons from petroleum reservoirs. Even in everyday phe-
nomena like traffic jam on heavily congested roads, we experience shock
waves when there is an accumulation of cars. The shocks do not come
from collisions of cars, but rather from a rapid change in the density of
cars.

A more extensive discussion of several aspects of Peter Lax’s contri-
butions to mathematics can be found in [1]. An interview with him ap-
peared in [2], and the full range of his contributions can be studied in his
recently published selected works [3].

We must first explain what a differential equation is.

2. WHAT IS A DIFFERENTIAL EQUATION?

In order to discuss differential equations, we first have to introduce the
derivative. Consider the situation when you are driving your car. On the
odometer, you can measure the distance from your starting point, and
knowing that, your position is determined. The distance you cover per
unit of time is called the velocity, and that, of course, is what is displayed
on the speedometer. Mathematically, the velocity is nothing but the de-
rivative of the position. To put this in mathematical terms, we let x de-
note the position of the car, measured along the road from some starting
point. It depends on time, t , so we write that x = x(t ). The velocity, which
we denote by v and which depends on time, v = v(t ), is the change of
position for a small time interval, and mathematically we call that the de-
rivative3 of x, and write x ′(t ). Thus v(t ) = x ′(t ).

If a passenger in the car at each instant of time notes down the velocity,
it should be possible to compute the position of the car at each point in
time if we know the time and place that the trip started. To put it more
precisely, if we know the starting point x0 (and synchronize our clocks so
that we start at time t = 0), thus x(0) = x0, and we know v(t ) for all t , we
should be able to compute the position x as a function of time, that is,
determine x = x(t ). To solve this problem we have to solve a differential
equation, namely x ′(t ) = v(t ).

Differential equations are nothing but equations that involve deriva-
tives. You may think that we are doing a lot out of a small problem. How-
ever, it turns out that all the fundamental laws of nature can be expressed
as differential equations, as the following list displays

• Gravitation (Newton’s law),

3To make it more precise, if you advance from position x(t ) at time t to position
x(t+s) during the time period s, the velocity at time t is approximately (x(t+s)−x(t ))/s,
and the approximation gets better the smaller time interval s you use. Mathematically,
the velocity equals the limit of (x(t + s)−x(t ))/s as s tends to zero.
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• Quantum mechanics (The Schrödinger equation),
• Electromagnetism (Maxwell’s equations),
• Relativity (Einstein’s equations),
• The motion of gases and fluids (The Navier–Stokes’s equations).

The motion of planets, computers, electric light, the working of GPS (Global
Positioning System), and the changing weather can all be described by
differential equations.

Let us proceed to a more complicated example than the position and
velocity of cars. Consider the heat in the room where you are sitting.
At each point (x, y, z) in space and time t we let T = T (x, y, z, t ) denote
the temperature. Assuming that walls are isolating and that no ovens are
on in the room, we can derive that the temperature distribution is deter-
mined by the so-called heat equation, which reads

Tt = Txx +Ty y +Tzz .

Here Tt means the derivative of the temperature with respect to the vari-
able t , while Txx denotes the derivative of the derivative, both with re-
spect to the space variable x, and similarly for the remaining terms. Even
simple problems give rise to difficult differential equations! Assuming
that we know the initial temperature, that is, we know T = T (x, y, z, t ) for
t = 0, our intuition tells us that the temperature should be determined
at all later times. The mathematical challenge is to prove this assertion
and describe a method to compute the actual temperature. These are the
kinds of questions that Peter Lax has addressed in his research on differ-
ential equations.

Unfortunately, differential equations do not normally possess solutions
that are expressed by formulas, and thus we need to develop methods for
computing the solution numerically. With high speed computers, we can
determine an approximate, or numerical, solution. We emphasize that by
necessity this will be an approximate solution, and we will need to know
if, and to what extent, we can trust the approximate answer. In a situa-
tion where we do not know the exact answer, or where we cannot know
if we were right before it is too late (for instance, the weather forecast for
tomorrow), it is absolutely necessary to know to what extent our simula-
tions are reliable. Peter Lax has made fundamental contributions to our
understanding of these issues.

There is no unified mathematical theory that covers all, or most, differ-
ential equations. Different classes of differential equations require rather
different methods, but even at this very general level, Lax has contributed
two highly useful results that are described in all books in the area. The
Lax–Milgram theorem states that certain differential equations have a unique
solution. The Lax equivalence principle states that any consistent numer-
ical method for linear problems is stable if and only it is convergent.

It is appropriate here to digress briefly on the interaction between math-
ematics and computers. Peter Lax has always been a strong proponent
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of the importance of computers to mathematics and vice versa, saying
that4 “[High speed computers’] impact on mathematics, both applied
and pure, is comparable to the role of telescopes in astronomy and mi-
croscopes in biology”. The logical construction of computers and their
operating systems are mathematical by nature, but computers also serve
as laboratories for mathematicians, where you can test your ideas. New
mathematical relations can be discovered, and your hypotheses and as-
sumptions can be disproved or made more likely by applying computers.
Lax has given the example of the great mathematician G. D. Birkhoff who
spent a lifetime trying to prove the ergodic hypothesis. If Birkhoff had had
access to a computer and had tested the hypothesis on it, he would have
seen that it cannot be true in general. On a more technical level, prob-
lems of modern technology like the simulation of systems as complex as
airplanes, oil rigs, or the weather not only require very powerful comput-
ers, but also the development of new and better mathematical algorithms
for their solution. It is a fact that in broad terms, the development of
high speed computers (hardware) and the development of new numer-
ical techniques (software) have contributed equally to the total perfor-
mance we observe in simulations. Peter Lax himself has made penetrat-
ing contributions to the development of new mathematical methods that
have enabled us to understand and compute important phenomena.

3. SHOCK WAVES

B. Riemann

In 1859 the brilliant German mathematician Berhard
Riemann (1826–66) considered the following problem: If
you have two gases at different pressures in a cylinder sep-
arated by a thin membrane, what happens if you remove
the membrane? This problem has later been called the
Riemann problem, and it turns out to be a very compli-
cated question. The behavior of gases is well modeled by
the Euler equations, which read5

ρt + (ρv)x = 0,

(ρv)t + (ρv2 +P)x = 0,

Et + (v(E +P))x = 0,

P = P(ρ),

where p, v, P , and E denote the density, velocity, pressure, and energy of
the gas, respectively. This is truely an intricate system of equations that
remains unsolved in the general case to this day..

4The flowering of applied mathematics in America, SIAM Review 31 (1989) 533–541.
5Riemann studied the simpler problem where the third equation, the one for the en-

ergy, is ignored.
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Flow of gas past three cylinders.

The Euler equations consti-
tute a special case of a class of
differential equations called
hyperbolic conservation laws.
The solutions of these equa-
tions are very complicated as
the illustrations show. These
equations are fundamental in
several areas of applied sci-
ence, for they express that a
quantity is preserved. Exam-
ples abound because we have
conservation of mass, mo-
mentum, and energy in iso-
lated systems. In addition to
the motion of gases, applica-
tions include the flow of oil in

a petroleum reservoir. A less obvious example is the dynamics of cars
on a highly congested road without exits or entries; here the conserved
quantity is the number of cars.

The pressure of a
gas exploding in a
box.

The core of the problem with hyperbolic conser-
vation laws, regardless of whether they describe traf-
fic flow or the flow of oil in a petroleum reservoir,
is that the solution develops singularities, or discon-
tinuities, called shocks. Shocks correspond to very
rapid transitions in density or pressure. Numerical
methods have difficulty resolving these shocks, and
the mathematical properties are very complicated.
The mathematical models allow for more than one
solution, and the selection principle, which goes un-
der the name of entropy condition, for determining
the one true physical solution is very complicated.

Indeed, at this point Riemann erred and selected the wrong solution,
tacitly assuming that the entropy is preserved. The velocity of the shock
was determined by the Scottish engineer, Rankine, and the French math-
ematician, Hugoniot, but it was left to Peter Lax in 1957 to come up
with a simple criterion, now called the Lax entropy condition, that selects
the true physical solution for general systems of hyperbolic conservation
laws. The admissible shocks are called Lax shocks. The solution of the
Riemann problem is now called the Lax theorem, and it is a cornerstone
in the theory of hyperbolic conservation laws. His solution has stimu-
lated extensive further research into different entropy conditions appli-
cable to other systems. In particular, the fundamental existence result for
the general initial-value problem posed by Glimm, uses the Lax theorem
as a building block.
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Once we have decided upon a selection principle, we still have to com-
pute the solution. Here, Peter Lax has introduced two of the standard
numerical schemes for solving hyperbolic conservation laws, namely the
so-called the Lax–Friedrichs scheme and the Lax–Wendroff scheme. These
schemes serve as benchmark tests for other numerical techniques and
have served as a starting point for theoretical analysis. Indeed, the Lax–
Friedrichs scheme was used by the Russian mathematician Oleı̆nik in her
constructive proof of the existence and uniqueness of solutions of the in-
viscid Burgers equation. Another highly useful result is the Lax–Wendroff
theorem, which states the following: If a numerical scheme for a nonlin-
ear hyperbolic conservation law converges to a limit, then we know that
the limit at least is a solution of the equation.

Peter Lax’s results in the theory of hyperbolic conservations laws are
groundbreaking. They have resolved old problems, and have stimulated
extensive new research in the field, and still are at the core of the field.

Epilogue. Lax considers himself both a pure and an applied math-
ematician. His advice to young mathematicians is summarized in6 “I
heartily recommend that all young mathematicians try their skill in some
branch of applied mathematics. It is a gold mine of deep problems whose
solutions await conceptual as well as technical breakthroughs. It dis-
plays an enormous variety, to suit every style; it gives mathematicians
a chance to be part of the larger scientific and technological enterprise.
Good hunting!”

Acknowledgments. The portrait of Riemann is from the MacTutor His-
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