
Chapter 9

Limit

Limit is the foundation of calculus that it is so useful to understand more complicating chapters of calculus.

Besides, Mathematics has “black hole” scenarios (dividing by zero, going to infinity etc.), and limits give us

an estimate when we can’t compute a result directly. Limits allow us to ask “What if?”. If we can directly

observe a function at a value, we don’t need a prediction. The limit wonders, “If you can see everything

except a single value, what do you think is there?”.∗

9.1 Introduction

Sometimes we cannot work something out directly, but we can see what it should be as we get closer and

closer. To makes the concept of limit clear, an example will do.

Example 9.1. For x = 1, what is the value of the function

y =
x2 − 1

x− 1

For x = 1,

y =
12 − 1

1− 1

=
0

0

Now,
0

0
is difficult for us to understand that we do not really know the value of

0

0
(it is “indeterminate”),

so we need another way of answering this.

So instead of trying to work it out for x = 1, try approaching it closer and closer:

∗https://betterexplained.com/articles/an-intuitive-introduction-to-limits/
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2 CHAPTER 9. LIMIT

Now we see that as x gets close to 1, then
x2 − 1

x− 1
gets close to 2. Before we proceed to the next step, we

shall try if we can still obtain the same result, starting from the larger side of x. Let us see.

Turns out the results from the left (i.e. smaller x) and the right (i.e. larger x) yield the same outcome that

the function converges to 2 as well. We are more certain that it converges to 2 when x approaches 1.

We want to say that y|x=2 =
(1)2 − 1

(1)− 1
= 2 but we can’t, so instead mathematicians say exactly what is going

on by using the magic word “limit”. † N

9.2 Definition

If f(x) is defined for all x near c, except possibly at c itself, and if we can ensure that f(x) is as close as

we want to L by taking x close enough to (but different from) c, we say that the function f approaches the

limit L as x approaches c, and we write it as

lim
x→1

f(x) = L.

Therefore, for the above example, we shall express the result as

lim
x→1

x2 − 1

x− 1
= 2.

Then, we shall ask: what if the results from the left and right are not the same? What does it interpret?

Does the limit still exist?

†https://www.mathsisfun.com/calculus/limits.html
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From the graph above, we can see that the curve is not continuous (broken) at c. If we adopt the approach

used in the previous example, we will without doubt obtain different outcomes from the left and from the

right. We express them as

lim
x→c+

f(x) 6= lim
x→c−

f(x).

We say the limit does not exist at x = c if the left limit and right limit are not equal.

9.3 Properties of Limit

There are many properties to help calculate the values of limits. If lim
x→c

f(x) = L, lim
x→c

g(x) = M , and k is a

constant, then

1. lim
x→c

kf(x) = kL

2. lim
x→c

[f(x)± g(x)] = L±M

3. lim
x→c

[f(x) · g(x)] = LM

4. lim
x→c

f(x)

g(x)
=

L

M
, forM 6= 0

5. If f(x) ≤ g(x) on an interval containing c in its interior, then the order of the limits is preserved, i.e.,

L ≤M .

Example 9.2. Find lim
x→1

x2 − 1

x− 1

lim
x→1

x2 − 1

x− 1
= lim

x→1

(x− 1)(x+ 1)

x− 1
= lim

x→1
(x+ 1)

= lim
x→1

x+ lim
x→1

1

= 1 + 1

= 2

N
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9.4 Technique

Limit problems could be quite tacky sometimes that require more advanced techniques to deal with, some

useful skills are listed as follows.

9.4.1 The Squeezing Theorem

The Squeezing Theorem, also known as the Sandwich Theorem, helps predict the value of a limit, by knowing

the limits of its boundaries. For example, we know that a boy is walking on the street, with a bakery shop

at the start of the street, a book store in the middle and an hospital at the end. Assuming that the boy goes

into the shops agreed to their order, if we know that the boy goes into the bakery shop at 16 : 02 and into

the hospital at 16 : 02, then it is certain that he arrives the book store at 16 : 02 as well.

In mathematical terms, suppose that f(x) ≤ g(x) ≤ h(x) holds for all x in some open interval containing a,

except possibly at x = a itself. Suppose also that

lim
x→a

f(x) = lim
x→a

h(x) = L

Then lim
x→a

g(x) = L too. Similar statements hold for left and right limits.

Example 9.3. Find the limit lim
x→0

x2 sin(
1

x
).

Consider that

−1 ≤ sin(
1

x
) ≤ 1

−x2 ≤ x2 sin(
1

x
) ≤ x2

As

lim
x→0
−x2 = lim

x→0
x2 = 0,

By squeezing theorem,

lim
x→0

x2 sin(
1

x
) = 0.

N

9.4.2 Intermediate Value Theorem

A continuous function attains all values between any two of its values. Take the following example to explain

what and how Intermediate Value Theorem works. A girl who weights 5 pounds at birth and 100 pounds at

age 12 must have weighted exactly 50 pounds at some time during her 12 years of life, since her weight is a

continuous function of time.

In mathematical terms, suppose that f(x) is continuous on [a,b] and W is any number between f(a) and

f(b). Then, there is at least one number c ∈ [a, b] for which

f(c) = W .

Example 9.4. Show that the equation x2 − x− 1 =
1

x+ 1
has a solution between 1 ≤ x ≤ 2.
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Let

f(x) = x2 − x− 1− 1

x+ 1
= 0,

which means we have to prove that there exists c such that f(c) = 0.

Then

f(1) = −3

2
, f(2) =

2

3

By Intermediate Value Theorem, the curve must cross the x-axis somewhere between x = 1 and x = 2.

i.e. there is a number c such that 1 ≤ c ≤ 2 and f(c) = 0.

N

9.5 Exercises

Find the left and right limits of questions 1− 4.

1. f(x) =
x2 − 4

x− 2
at x = 2.

2. f(x) =
x

|x|
at x = 0.

3. f(x) =
x2

x2 − 4
at x = 2

4. f(x) =
x2 − 2x− 3

x2 + 6x+ 9
at x = −3

5. Let f(x) = |x| − x.
(a) Does lim

x→0
f(x) exist? (b) Is f(x) continuous at x=0?

6. Discuss the continuity of each of the following functions.

(a) f(x) =
1

x
.

(b) g(x) =
x2 − 1

x+ 1
.

(c) h(x) =
√
x.

7. Show that, if possible, there exists c in the interval such that f(c) = k.

(a)f(x) = x2 − 2x+ 1; k = 4, [−3, 2].

(b)f(x) =
1

2x− 1
; k = 0.5, [1, 2].

(c)f(x) = 20 sin(x+ 3) cos(
x2

2
); k = −10, [0, 5].

8. (a) Given that 3− x2 ≤ u(x) ≤ 3 + x2 for all x 6= 0, find lim
x→0

u(x).

(b) If lim
x→a
|f(x)| = 0, find lim

x→a
f(x).

Find the limit of the following questions.
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9. lim
x→2

x−
√

2 + x

x− 2
.

10. lim
x→1−

x2 + 2x− 3

|x− 1|
.

11. lim
x→2

x2 + 4x− 12

|x− 2|
.

12. lim
θ→0

sin θ

θ
.

13. lim
θ→0

1− cos2(θ)

θ2
.

14. lim
x→+∞

√
x2 + x+ 1− x.

15. lim
x→∞

4x2 − x+ 3

3x2 + 5
.

16. lim
x→∞

4x− 3

3x2 + 5
.

17. lim
x→∞

x− cos(x)

x

18. lim
x→∞

4x2 − 3

3x+ 5
.

19. lim
x→∞

(
√
x2 + x− x).

20. lim
x→2

x+ 1

x− 2
.

21. lim
x→1

x2 − 1

x2 − 3x+ 2
.

22. lim
x→1

√
x− 1

x− 1
.

23. lim
x→∞

x2 + 3

2x
.

24. lim
x→+∞

x(e
2
x − 1).

25. lim
x→+∞

xe−3x.

26. lim
x→+∞

x2 + 3x+ 1

x lnx
.

27. lim
x→1+

3
√
x+ 1 ln(x+ 1).

28. lim
x→∞

−(x+ 1)(e
1

x+1 − 1).

29. lim
x→+∞

tan−1(3x)− π
2

tan−1(7x)− π
2

.



Chapter 10

Differentiation

10.1 Introduction

This section deals with the problem of finding a straight line L that is tangent to a curve C at a point P .

Let C be the graph of y = f(x), and P be the point (x0, y0) on C so that y0 = f(x0). Also assume that P

is not an endpoint of C.

7
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Given the curve y = f(x) and the point P = (x0, f(x0)), we choose a difference point Q on the curve C so

that Q = (x0 + h, f(x0 + h)). Note that h can be positive or negative, depending on whether Q is to the

right or left of P .

The line through P and Q is called a secant line to the curve. The slope of the line PQ , also known as

difference quotient, is

f(x0 + h)− f(x0)

h

.

For nonvertical tangent line,

Suppose that the function f is continuous at x = x0 and that

lim
h→0

f(x0 + h)− f(x0)

h
= m

exists. Then the straight line having slope m and passing through the point P = (x0, f(x0)) is called the

tangent line to the graph of y = f(x) at P . An equation of this tangent line is

y = m(x− x0) + y0

For vertical tangents,

If f is continuous at P = (x0, y0), where y0 = f(x0), and if either

lim
h→0

f(x0 + h)− f(x0)

h
=∞



10.2. DERIVATIVE 9

or

lim
h→0

f(x0 + h)− f(x0)

h
= −∞

then the vertical line x = x0 is tangent to the graph y = f(x) at P .

For no tangent line,

If the limit of the difference quotient fails to exist in any other way than by being ∞ or −∞, the graph

y = f(x) has no tangent line at P .

Example 10.1. Find an equation of the tangent line to the curve y = x2 at the point (1,1).

Note that f(x) = x2, x0 = 1 and y0 = f(x0) = 1. By definition, the slope of the tangent line is

m = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

(1 + h)2 − 1

h
= lim

h→0
(2 + h)

= 2

Therefore, the equation of the tangent line is

y = m(x− x0) + y0 = 2(x− 1) + 1 = 2x− 1

N

Example 10.2. Find the tangent line to the curve y = x dfrac13 at the point (0, 0).

For this curve, the limit of the quotient for f at x = 0 is

lim
h→0

f(0 + h)− f(0)

h
= lim
h→0

h1/3

h
= lim
h→0

1

h2/3
=∞

Thus by definition, the vertical line x = 0 (i.e. the y-axis) is the tangent line to the curve y = x1/3 at the

point (0, 0).

N

Example 10.3. Does the graph of y = |x| have a tangent line at x = 0?

For this curve, the difference quotient is

f(x0 + h)− f(x0)

h
=
|0 + h| − |0|

h
=
|h|
h

Now since
|h|
h

has different right and left limits at 0, the Newton quotient has no limit at h → 0. This

implies that y = |x| has no tangent line at (0, 0). N

10.2 Derivative

From the Newton quotient rule, we can deduce the following definition.
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10.2.1 Definition

The slope of a curve C at a point P is the slope of the tangent line to C at P if such a tangent line exists.

In particular, the slope of the graph of y = f(x) at the point x0 is

lim
h→0

f(x0 + h)− f(x0)

h
.

We also call it the derivative of a function f = C at x0, also known as f ′.

For the derivative of f at all points x,

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

If f ′(x) exist (i.e., is a finite real number), we say that f is differentiable at x.

Example 10.4. Find the slope of the curve y =
x

2x+ 3
at the point x = 3.

The slope of the curve at x = 3 is

m = lim
h→0

f(3 + h)− f(3)

h

= lim
h→0

3 + h

9 + 2h
− 1

3
h

= lim
h→0

1

27 + 6h

=
1

27

N

Example 10.5. Show that if f(x) = ax+ b, then f ′(x) = a.

By definition, we have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

a(x+ h) + b− (ax+ b)

h

= lim
h→0

ah

h
= a.

N

10.3 Differentiation Rule

There are some fundamental derivative rules that we should pay attention to.
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10.3.1 Linear Rules of Differentiation

If f and g are differentiable at x, and if c is a constant, then the functions f + g, f − g and cf are all

differentiable at x and

(f(x)± g(x))′ = f ′(x)± g′(x)

(cf(x))′ = cf ′(x)

10.3.2 Product Rule of Differentiation

If f and g are differentiable at x, then their product fg is also differentiable at x, and

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x).

Example 10.6. Find the derivative of (x2 + 1)(x3 + 4) using the Product rule.

Using the Product rule, we have

d

dx
(x2 + 1)(x3 + 4) = 2x(x3 + 4) + (x2 + 1)(3x2)

= 5x4 + 3x2 + 8x

N

10.3.3 Quotient Rule of Differentiation

If f and g are differentiable at x, and if g(x) 6= 0, then the quotient
f

g
is differentiable at x and

(
f(x)

g(x)
)′ =

f ′(x)g(x)− f(x)g′(x)

g2(x)

10.3.4 Reciprocal Rule

If g is differentiable at x and if g(x) 6= 0, then the reciprocal 1/g is also differentiable at x and

(
1

g(x)
)′ =

−g′(x)

g2(x)

Example 10.7. Find the derivatives of y =
x2

x+ 1
.

By the Quotient rule, we have

dy

dx
=

(x2)′(x+ 1)− x2(x+ 1)′

(x+ 1)2

=
2x(x+ 1)− x2

(x+ 1)2

=
x2 + 2x

(x+ 1)2

N
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10.3.5 Elementary Derivatives

From the derivative rule, we can derive the derivatives of some elementary functions.

10.4 Derivative of Trigonometry

The derivatives of trigonometry are shown as follows.

d

dx
sin(x) = cos(x)

d

dx
cos(x) = sin(x)

d

dx
tan(x) = sec2(x)

Proof 10.1. To prove that
d

dx
sinx = cosx,

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

sin(x+ h)− sin(x)

h

= lim
h→0

2 cos(
x+ h+ x

2
) sin(

x+ h− x
2

)

h

= lim
h→0

2 cos(
x+ h+ x

2
)
1

2
lim
h→0

sin(
h

2
)

h

2

= cos(
2x

2
) · 1

= cosx

�
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10.5 Derivative of Natural Log and Exponential

For f(x) = ln(x), the derivative is

f ′(x) =
1

x

For g(x) = ex, the derivative is the same, i.e.

g′(x) = ex

Therefore, if you differentiate the function infinitely many times, the outcome should still be the same.

10.6 Chain Rule

If f(u) is differentiable at u = g(x), and g(x) is differentiable at x, then the composite function f ◦ g(x) =

f(g(x)) is differentiable at x and

(f(g(x)))′ = f ′(g(x))g′(x).

In Leibniz’s notation, by letting y = f(u) where u = g(x), we have y = f(g(x)) and

dy

dx
=
dy

du

du

dx
.

The Chain rule can be extended to composite functions with any finite number of intermediate functions.

Assume that y = f(u), u = g(v) and v = h(x). Then y = f(g(h(x))) and the Chain rule is

dy

dx
=
dy

du

du

dv

dv

dx
.

Example 10.8. Find the derivative of y =
1

x2 − 4

By the Chain rule, we let y = f(g(x)) with f(u) = 1
u and u = g(x) = x2 − 4. Then

dy

dx
=

dy

du

du

dx

=
−1

u2
(2x)

=
−2x

(x2 − 4)2

N

10.7 High-order Derivatives

The second derivative of a function is the derivative of its derivative. If y = f(x), the second derivative is

defined by

y′′ = f ′′(x).
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For any positive integer n, the nth derivative of a function is obtained from the function by differentiating

successively n times. If the original function is y = f(x), the nth derivative is denoted by

dny

dxn

or

f (n)(x).

Specially, we have

f (k)(x) =
d

dx
[f (k−1)(x)],

for k = 1, 2, · · · , n, if f (0)(x), f (1)(x), · · · , f (n)(x) are all differentiable.

Example 10.9. Calculate the first 3 derivatives of f(x) =
√
x2 + 1.

Note that f(x) = (x2 + 1)
1
2 , we have

f ′(x) =
1

2
(x2 + 1)

−1
2

= x(x2 + 1)
−1
2

f”(x) = (x2 + 1)
−1
2 + x

−1

2
(x2 + 1)

−3
2 (2x)

= (x2 + 1)
−3
2

f (3)(x) = (
−3

2
)(x2 + 1)

−5
2 (2x)

= −3x(x2 + 1)
−5
2

N

10.8 Mean-Value Theorem

Suppose that the function f is continuous on the closed, finite interval [a, b] and that it is differentiable on

the open interval (a, b). Then there exists a point c in the open interval (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

This says that the slope of the chord line joining the points (a, f(a)) and (b, f(b)) is equal to the slope of

the tangent line to the curve y = f(x) at the point (c, f(c)), so the two lines are parallel.

Example 10.10. Show that sin(x) < x for all x > 0.

Case (i): If x >
π

2
, then sin(x) ≤ 1 ≤ π

2
< x.

Case (ii): If 0 < x ≤ π

2
, then by the Mean-Value theorem, there exists a point c ∈ (0,

π

2
) such that
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sin(x)

x
=

sin(x)− sin(0)

x− 0

=
d

dx
sin(x)|x=c

= cos(c) < 1.

By (i) and (ii), sin(x) < x for all x > 0. N

10.9 Exercises

Find the derivatives of question 1 to 18 and the second derivatives of question 19 to 37 with respect to x.

1. y = (1− 3x)4.

2. y = (x2 + 3x− 5)5.

3. y = (x3 − 2 +
1

x2
)6.

4. y =
√
x7 +

√
x5 +

√
x.

5. y =
1√

x2 + 5x− 3
.

6. y = (2x− 3)(4x− 7)3.

7. y =
(3x− 4)2

(2x− 1)3
.

8. y =
√
x−
√
x2 − 3.

9. y =
2
√

4− 3x

(x2 + 6)3
.

10. y =
√

(1− 2x)3 3
√

3x2 + 1.

11. y = (3x−
√

9x2 − 8)5.

12. y = ln(x2 + 1).

13. y = ex/2.

14. y = ln(
1

x− 1
).

15. y = ln(
√
x− 3).

16. y = y = x2 ln(2x3 + 1).

17. y = ln
x2 + 1√

x
.

18. y = ln
5x

x+ 1
.

19. y = ln(sin 3x).

20. y =
4x

(lnx)3
.

21. y = ln(tan e2x).

22. y =
esin

2x

ecos2 x
.

23. y = 2x2 − 6x+ 7.

24. y = 3x− 1

12x3
+ 7.

25. y = x(4x− 3)2.

26. y = cos 5x.

27. y = tan2 x.

28. y =
1

x2 − 1
.

29. y =
sinx

sinx+ 1
.

30. y =
√
x+ 1− 1√

x+ 1
.

31. y = 2x lnx3.

32. y = sin3 2x.

33. y = x2ex.

34. y = sinx cos 3x.

35. y = ln(3x2 − 2x+ 1).

36. y = x2x sinx.

37. y =
√
x5 − 4x2 + 1 · 3x2.
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38. Let y = 4x2 + 2x+ 1. Prove that x
d2y

dx2
− dy

dx
+ 2 = 0.

39. Let y =
√
x2 − 2. Prove that (

dy

dx
)2 + y

d2y

dx2
= 1.

40. Let y =
sinx

x
. Find the value of k such that x

d2y

dx2
+ dy + k

dy

dx
= 0.

41. Determine all the number(s) c which satisfy the conclusion of Mean-Value Theorem for the given

function and interval.

(a) f(x) = x2 − 2x− 8 on [−1, 3].

(b) f(x) = 2x− x2 − x3 on [−2, 1].

(c) f(x) = 4x3 − 8x2 − 2 on [2, 5].

(d) f(x) = 8x+ e−3x on [−2, 3].

42. Suppose we know that f(x) is continuous and differentiable on the interval [−7, 0], that f(−7) = −3

and that f ′(x) ≤ 2. What is the largest possible value for f(0)?

43. Show that f(x) = x3 − 7x2 + 25x+ 8 has exactly one real root.



Chapter 11

Application of Differentiation

11.1 L’Hôpital Rule

There are some mathematical “black holes” that we do not understand, but we wish to. And L’Hôpital Rule

is a super powerful tool to tackle such problems. It can be so useful when the following indeterminate

forms happen: ‡

Now we know that L’Hôpital Rule shall be used when a indeterminate form happens. So how to use the

method? Technically, L’Hôpital Rule tells us that if we have an indeterminate form, all we need to do is

differentiate the numerator and the denominator seperately, then take the limit. Take a look at the following

example.

Example 11.1. Find lim
x→−2

x+ 2

ln(x+ 3)
.

‡http://tutorial.math.lamar.edu/Classes/CalcI/LHospitalsRule.aspx

17
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We have lim
x→−2

x+ 2

ln(x+ 3)
which is in [

0

0
] form. Therefore, by L’Hôpital Rule,

lim
x→−2

x+ 2

ln(x+ 3)
= lim

x→−2

1
1

x+ 3

· (1 + 0)

= lim
x→−2

1
1

x+ 3
= lim

x→−2
x+ 3

= −2 + 3 = 1

N

Example 11.2. Calculate

lim
x→∞

(1 + x)

1

x .

Since lim
x→∞

(1 + x)

1

x is of type [∞0], set

y = (1 + x)

1

x .

So that

ln y = ln(1 + x)

1

x =
ln(1 + x)

x

lim
x→∞

ln y = lim
x→∞

ln(1 + x)

x
[
∞
∞

]

= lim
x→∞

1

1 + x
= 0

Taking exponentials gives

lim
x→∞

y = e0 = 1.

lim
x→∞

(1 + x)
1
x = 1.

N

11.2 Tangents and Normals

Let C be a curve on a rectangular coordinate plane. Consider a point (x, y) on C. The derivative
dy

dx
is the

slope of the tangent to the curve at this point. For the slope of the tangent at a particular point P (x1, y1),

we simply put the coordinates in the expression of
dy

dx
and that value of

dy

dx
is denoted by

dy

dx
|(x1,y1), which

is actually the slope m of the tangent to the curve at point P .
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It is easy to determine the equations of the tangent and the normal to the curve at point P . By the

point-slope form, we have

Equation of the tangent at P :

y − y1 = m(x− x1).

Equation of the normal at P :

y − y1 = − 1

m
(x− x1),where m 6= 0

.

Example 11.3. Find the equations of the tangent and the normal to the curve y = x2 + 2x+ 1 at the point

(0, 1).

First, differentiate both sides of the equation with respect to x,

y′ = 2x+ 2

Then, substitute the point (0, 1) into the derivative,

y′|(0,1) = 2(0) + 2 = 2

which is the slope of the tangent.

Therefore, the equation of the tangent to the curve at (0, 1) is

y − 1 = 2(x− 0)

2x− y + 1 = 0

Slope of the normal to the curve at (0, 1) = −1

2
.

Therefore, the equation of the normal to the curve at (0, 1) is

y − 1 = −1

2
(x− 0)

x+ 2y − 2 = 0

N

11.3 Find Maximum and Minimum

11.3.1 Absolute Extreme Points

A function f has an absolute maximum value f(x0) at the point x0 in its domain if f(x) ≤ f(x0) holds

for every x in the domain of f .

Similarly, the function f has an absolute minimum value f(x1) at the point x1 in its domain if f(x) ≥
f(x1) for every x in the domain of f .

Note
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• A function can have at most one absolute maximum or minimum value, although this value can be

assumed at many points.

• Maximum and minimum values of a function are collectively referred to as extreme values.

• A function may not have any absolute extreme value. E.g.: f(x) =
1

x
has no finite absolute maximum.

11.3.2 Local Extreme Points

A function f has a local maximum value f(x0) at the point x0 if f(x) ≤ f(x0) in a certain neighborhood

of x0.

Similarly, the function has a local minimum value f(x1) at the point x1 if f(x) ≥ f(x1) in a certain

neighborhood of x1.

11.3.3 Increasing and Decreasing Functions

Let J be an open interval, and let l be an interval consisting of all points in J and possibly one or both of

the endpoints of J .

Suppose that f is continuous on I and differentiable on J .

1. If f ′(x) > 0 for all x in J , then f is strictly increasing on I.

2. If f ′(x) < 0 for all x in J , then f is strictly decreasing on I

3. If f ′(x)′ ≥ 0 for all x in J , then f is nondecreasing on I

4. If f ′(x) ≤ 0 for all x in J , then f is nonincreasing on I

Example 11.4. For an instance, y = 3x+ 5 is a strictly increasing function for x ∈ R since y′ = 3 which is

greater than zero. N

There are two methods to find out the maximum or minimum point of a curve of f .
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First Derivative Test

From the curve above, as x increases through −2, the function f(x) is first increasing and then decreasing. We

say f(x) has a maximum point at x = −2 and thus (−2, 16) is called a maximum point of the curve y = f(x).

Similarly, as x increases through 2, the function f(x) is first decreasing and then increasing. We say f(x)

has a minimum at x = 2 and thus (2,−16) is called a minimum point of the curve y = f(x).

Example 11.5. Consider the curve y = 2x3 − 3x2 − 12x+ 10.

(a) Find the stationary points of the curve.

(b) Find the range of values of x such that y is decreasing or increasing.

(c) Hence, find the maximum and minimum points of the curve.

(a) First we find the first derivative.
dy

dx
= 6(x+ 1)(x− 2)

Then put
dy

dx
= 0,

6(x+ 1)(x− 2) = 0

x = −1 or 2

When x = −1, y = 17. When x = 2, y = −10. Therefore the stationary points are (−1, 17) and

(2,−10).

(b) The trend of the curve is as shown below.
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(c) As x increases through −1,
dy

dx
changes sign from positive to negative. Hence (−1, 17) is a maximum

point.

As x increases through 2,
dy

dx
changes sign from negative to positive. Hence (2,−10) is a minimum

point.

N

Second Derivative Test

In the First Derivative Test, we first find the stationary points by solving f ′(x) = 0. Then we consider the

changes in sign of f ′(x), i.e. the slope of the tangent, as x increases through the x-coordinate of a stationary

point. In Second Derivative Test, we have the following testing method.

Suppose f(x) and f ′′(x) are differentiable with respect to x in an interval containing x = a.

If f ′(a) = 0 and f ′′(a) < 0, then f(x) has a (local) maximum at x = a.

If f ′(a) = 0 and f ′′(a) > 0, then f(x) has a (local) minimum at x = a.

Example 11.6. Given the curve y = (x+ 1)2(x+ 4), find the maximum and minimum points of the curve.

First we find the first and second derivatives of the equation.

dy

dx
= 3(x+ 1)(x+ 3)

d2y

dx2
= 6(x+ 2)

Put
dy

dx
= 0,

3(x+ 1)(x+ 3) = 0

x = −1 or − 3.

When x = −1, y = 0. When x = −3, y = 4.

Therefore the stationary points are (−1, 0) and (−3, 4).

For (−1, 0),
d2y

dx2
|x=−1 = 6 > 0. Therefore, (−1, 0) is a minimum point.

For (−3, 4),
d2y

dx2
|x=−3 = −6 < 0. Therefore, (−3, 4) is a maximum point.

N
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11.4 Curve Sketching

Before we start curve sketching, there are a few fundamental concepts that we should know.

11.4.1 Concavity and Inflections

We say that the function f is concave up on an open interval I if it is differentiable there and the derivative

f ′ is an increasing function on I.

Similarly, f is concave down on I if f ′ exists and is an decreasing function on I.

If f(x) is a function on [a, b] such that f(x) is second differentiable on (a, b), then

(i) f”(x) > 0 if and only if f(x) is concave upward on (a, b)

(ii) f”(x) < 0 if and only if f(x) is concave download on (a, b).

11.4.2 Point of Inflection

Let f(x) be a continuous function. A point (a, f(a)) on the graph of f(x) is a point of inflection if the graph

on one side of this point is concave downward and concave upward on the other side. That is, the graph

changes concavity at x = a.

Note A point of inflection of a curve y = f(x) must be a continuous point but need not be differentiable

there. In Figure (c), R is a point of inflection of the curve but the function is not differentiable at x0.
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Example 11.7. Find the points of inflection of the curve y = x4 − 6x2 + 8x+ 10.

y′ = 4x3 − 12x+ 8

y” = 12x2 − 12

= 12(x− 1)(x+ 1)

For y” = 0, x = 1 or −1.

The curve has points of inflection at x = 1 and x = −1. These two points are (−1,−3) and (1, 13). N

11.4.3 Asymptote

A straight line is an asymptote to a curve if and only if the perpendicular distance from a variable point

on the curve to the line approaches to zero as a limit when the point tends to infinity along the curve on

both sides or one side of the curve. (see figure below)

(i) the line x = c is said to be vertical asymptote of the curve y = f(x) if

lim
x→c+

f(x) =∞ or lim
x→c−

f(x) =∞

(ii) the line y = mx+ c is said to be an oblique/horizontal asymptote of the curve y = f(x) if

lim
x→∞

[f(x)− (mx+ c)] = 0

To find the asymptote y = mx+ c,

m = lim
x→∞

f(x)

x
and c = lim

x→∞
[f(x)−mx]
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Example 11.8. (i) The curve y =
1

x
has two asymptotes x = 0 or y = 0. (ii) The curve y = ex has an

asymptote y = 0. (iii) The curve y =
1

x
sinx has an asymptote y = 0. N

11.4.4 Procedures

Finally, we can sketch a curve by using the knowledge mentioned above. Steps of skecthing a graph involve

1. Find the first derivative and second derivative of f(x).

2. Determine the range of x that it is increasing or decreasing.

3. Determine the relative extreme points and points of inflection of f(x).

4. Find the asymptotes of the graph of f(x).

5. Finally, sketch the graph.

Example 11.9. Sketch the curve y =
x2

2− x
.

Let f(x) =
x2

2− x
. First, find the first and second derivative of the function.

f ′(x) =
4x− x2

(2− x)2

f”(x) =
8

(2− x)3

To find the extreme point(s) of the curve, put f ′(x) = 0.

4x− x2

(2− x)2
= 0

x(4− x) = 0

x = 0 or 4

When x = 0, y = 0. When x = 4, y = −8.

Therefore, the extreme points are (0, 0) and (4,−8).

For (0, 0), f”(0) =
8

(2− 0)3
= 1 > 0. Therefore, (0, 0) is a minimum point.

For (4,−8), f”(4) =
8

(2− 4)3
= −1 < 0. Therefore, (4,−8) is a maximum point.

To find the concavity of the curve,
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To find the asymptote(s),note that f(x) is defined for all real values of x except x = 2. Therefore, the curve

is discontinuous at x = 2 and thus x = 2 is a vertical asymptote of the graph.

For the oblique/horizontal asymptote, let y = mx + c be the asymptote. Then the slope and the constant

term are

m = lim
x→∞

x2

2−x
x

= lim
x→∞

x

2− x

= lim
x→∞

1
2

x
− 1

=
1

0− 1
= −1.

c = [ lim
x→∞

f(x)−mx]

= [ lim
x→∞

x2

2− x
+ x]

= [ lim
x→∞

x2

2− x
+

2x− x2

2− x
]

= lim
x→∞

2x

2− x

=
2

0− 1
= −2.

Therefore, the oblique asymptote is y = −x− 2.

To find the x-intercept and y-intercept, sub x = 0 and y = 0 into the equation. When x = 0, y = 0.

Therefore, y-intercept is 0. When y = 0,
x2

2− x
= 0, i.e. x = 0. Therefore, x-intercept is 0.

With the above information, the curve is sketch below.

N
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11.5 Exercises

For Question 1− 10,, find the equations of the tangent and the normal to the curve at the given point.

1. y = x3 + 4x− 7 at the point (1,−2)

2. y = (2x2 − 3)3 at the point (−1,−1)

3. y = − 2

3x− 5
at the point (1, 1)

4. y =
√

2x at the point (2, 2)

5. y = x
√
x+ 1 at the point (0, 0)

6. y = cos 4x at the point
π

8
, 0)

7. x2 + y2 = 13 at the point (2, 3)

8. y2 = −5x2 + x+ 9 at the point (0, 3)

9. x2y − xy2 + 16 = 0 at the point (2, 4)

10. x3 − 3xy + y3 = 13 at the point (−1, 2)

11. The curve C : 3x2 + 2xy − y2 = 7 is given.

(a) Find
dy

dx
.

(b) Hence, find the equations of the two tangents to the curve C which are parallel to the line

3y + 5x = 0.

12. Consider the curve C : x2 − 2y sinx− y2 = π.

(a) Find
dy

dx
.

(b) P (
π

2
,−π

2
) is a point on the curve C. Find the equation of the tangent to the curve at P .

13. Consider the curve C : x2y − xy2 + 4 = 0.

(a) Find
dy

dx
.

(b) If the line x+ 2y =
√

3− 5 is the normal to the curve C at a point P , find the coordinates of P .

14. Find the equation of the normal to the curve y(x+1)2 = 2 which is perpendicular to the line y = −1

2
x.

15. Find the maximum and minimum points of each of the following curves by the First Derivative Test.

(a) y = 2x2 − 4x+ 3

(b) y = −x2 + 6x+ 5

(c) y = 3x− x3

(d) y2x3 − 6x2 + 5

(e) y = 4x3 − 3x2 − 18x+ 6

(f) y = (x− 2)(x2 − 4x+ 1)

(g) y = x+ 2 sinx for 0 ≤ x ≤ 2π

(h) y = sinx+
1

2
sin 2x for 0 ≤ x ≤ π

16. Find the maximum and minimum points of each of the following curves by the Second Derivative Test.

(a) y = x4 − 2x2 − 8
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(b) y = 3x4 − 8x3 − 6x2 + 24x+ 7

(c) y = (x+ 1)2(x− 1)

(d) y =
x2

x− 1

(e) y = 2x2 +
4

x

(f) y =
1

2
cos 2x for 0 ≤ x ≤ π.

(g) y = x− ex

(h) y = ln 4x− 2x2

17. Consider the curve y =
x

x2 + 1
.

(a) Find the maximum and minimum points of the curve.

(b) Find the points of inflection of the curve.

(c) Find the asymptote to the curve.

(d) Sketch the curve.

18. Consider the curve y = x− 1 +
4

x+ 2
.

(a) Find
dy

dx
.

(b) Find the turning points of the curve. Test whether each point is a maximum or a minimum point.

(c) Find the asymptotes to the curve.

(d) Sketch the curve.

19. Let f(x) =
a+ bx

4− x
for x 6= 4, where a and b are constants. The x-intercept and the y-intercept of the

curve y = f(x) are −2 and 4 respectively.

(a) Find the values of a and b.

(b) Find all the asymptotes to the curve y = f(x).

(c) Sketch the curve y = f(x).

20. Consider the curve y =
x2 + x+ 2

1− x
.

(a) Find the maximum and minimum points of the curve.

(b) Find the asymptotes to the curve.

(c) Sketch the curve.

21. HKALE 2003II 8

‘ Let f(x) = x2 − 8

x− 1
(x 6= 1).

(a) Find f ′(x) and f”(x).

(b) Determine the values of x such that
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i. f ′(x) > 0

ii. f ′(x) < 0

iii. f ′′(x) > 0

iv. f ′′(x) < 0

(c) Find the relative extreme point(s) and point(s) of inflection of f(x).

(d) Find the asymptotes of the graph of f(x).

(e) Sketch the graph of f(x).


