Setup
library(R.matlab)
## Warning: package 'R.matlab' was built under R version 4.0.3
## R.matlab v3.6.2 (2018-09-26) successfully loaded. See ?R.matlab for help.
##
## Attaching package: 'R.matlab'
## The following objects are masked from 'package:base':
##
## getOption, isOpen
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.3
library(ggExtra)
## Warning: package 'ggExtra' was built under R version 4.0.3
library(GGally)
## Warning: package 'GGally' was built under R version 4.0.3
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
library(gridExtra)
## Warning: package 'gridExtra' was built under R version 4.0.3
library(rgl)
## Warning: package 'rgl' was built under R version 4.0.3
knitr::knit_hooks$set(webgl = hook_webgl)
library(fmsb)
## Warning: package 'fmsb' was built under R version 4.0.3
library(aplpack)
## Warning: package 'aplpack' was built under R version 4.0.3
library(TeachingDemos)
## Warning: package 'TeachingDemos' was built under R version 4.0.3
##
## Attaching package: 'TeachingDemos'
## The following objects are masked from 'package:aplpack':
##
## faces, slider
Example 1 and Example 2
dollar_sales<-c(42,52,48,58)
number_books <-c(4,5,4,3)
Bookstore_sale<-cbind(dollar_sales, number_books)
colMeans(Bookstore_sale)
## dollar_sales number_books
## 50 4
cov(Bookstore_sale)
## dollar_sales number_books
## dollar_sales 45.33333 -2.0000000
## number_books -2.00000 0.6666667
cor(Bookstore_sale)
## dollar_sales number_books
## dollar_sales 1.0000000 -0.3638034
## number_books -0.3638034 1.0000000
Upload Datasets of Examples 1.4, 1.5, 1.6, 1.9, 1.10, 1.11
Bear_data<-readMat("Bear.mat")
## Warning in readMat("Bear.mat"): strings not representable in native encoding
## will be translated to UTF-8
attributes(Bear_data)
## $names
## [1] "Bear"
##
## $header
## $header$description
## [1] "MATLAB 5.0 MAT-file, Platform: PCWIN, Created on: Thu Jan 17 13:03:48 2008 "
##
## $header$version
## [1] "5"
##
## $header$endian
## [1] "little"
Bear<-Bear_data$Bear
Bear
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## [1,] 1 48 59 95 82 141 157 168 183
## [2,] 2 59 68 102 102 140 168 174 170
## [3,] 3 61 77 93 107 145 162 172 177
## [4,] 4 54 43 104 104 146 159 176 171
## [5,] 5 100 145 185 247 150 158 168 175
## [6,] 6 68 82 95 118 142 140 178 189
## [7,] 7 68 95 109 111 139 171 176 175
write.csv(Bear, file="Bear.csv") # save the data as csv format in the working directory
Lizard.size<-readMat("Lizard_Size.mat")
attributes(Lizard.size)
## $names
## [1] "Data.all"
##
## $header
## $header$description
## [1] "MATLAB 5.0 MAT-file, Platform: PCWIN, Created on: Mon Jan 14 10:39:42 2008 "
##
## $header$version
## [1] "5"
##
## $header$endian
## [1] "little"
Lizard.size<-as.data.frame(Lizard.size$Data.all)
Lizard.size
## V1 V2 V3 V4 V5
## 1 1 5.526 59.0 113.5 0
## 2 2 10.401 75.0 142.0 1
## 3 3 9.213 69.0 124.0 0
## 4 4 8.953 67.5 124.0 0
## 5 5 7.063 62.0 129.5 1
## 6 6 6.610 62.0 123.0 0
## 7 7 11.273 74.0 140.0 1
## 8 8 2.447 47.0 97.0 0
## 9 9 15.493 86.5 162.0 1
## 10 10 9.004 69.0 126.5 0
## 11 11 8.199 70.5 136.0 1
## 12 12 6.601 64.5 116.0 0
## 13 13 7.622 67.5 135.0 1
## 14 14 10.067 73.0 136.5 1
## 15 15 10.091 73.0 135.5 1
## 16 16 10.999 77.0 139.0 1
## 17 17 7.610 61.5 118.0 0
## 18 18 7.733 66.5 133.5 1
## 19 19 12.015 79.5 150.0 1
## 20 20 10.049 74.0 137.0 1
## 21 21 5.149 59.5 116.0 0
## 22 22 9.158 68.0 123.0 0
## 23 23 12.132 75.0 141.0 1
## 24 24 6.978 66.5 117.0 0
## 25 25 6.890 63.0 117.0 0
write.csv(Lizard.size, file="Lizard_size.csv") # save the data as csv format in the working directory
playroll<-read.table("playroll.DAT")
playroll
## V1 V2
## 1 3497900 0.623
## 2 2485475 0.593
## 3 1782875 0.512
## 4 1725450 0.500
## 5 1645575 0.463
## 6 1469800 0.395
lumber <- read.table("lumber.DAT")
lumber
## V1 V2 V3 V4
## 1 1889 1651 1561 1778
## 2 2403 2048 2087 2197
## 3 2119 1700 1815 2222
## 4 1645 1627 1110 1533
## 5 1976 1916 1614 1883
## 6 1712 1712 1439 1546
## 7 1943 1685 1271 1671
## 8 2104 1820 1717 1874
## 9 2983 2794 2412 2581
## 10 1745 1600 1384 1508
## 11 1710 1591 1518 1667
## 12 2046 1907 1627 1898
## 13 1840 1841 1595 1741
## 14 1867 1685 1493 1678
## 15 1859 1649 1389 1714
## 16 1954 2149 1180 1281
## 17 1325 1170 1002 1176
## 18 1419 1371 1252 1308
## 19 1828 1634 1602 1755
## 20 1725 1594 1313 1646
## 21 2276 2189 1547 2111
## 22 1899 1614 1422 1477
## 23 1633 1513 1290 1516
## 24 2061 1867 1646 2037
## 25 1856 1493 1356 1533
## 26 1727 1412 1238 1469
## 27 2168 1896 1701 1834
## 28 1655 1675 1414 1597
## 29 2326 2301 2065 2234
## 30 1490 1382 1214 1284
paper_quality <- read.table("paper_quality.DAT")
paper_quality
## V1 V2 V3
## 1 0.801 121.41 70.42
## 2 0.824 127.70 72.47
## 3 0.841 129.20 78.20
## 4 0.816 131.80 74.89
## 5 0.840 135.10 71.21
## 6 0.842 131.50 78.39
## 7 0.820 126.70 69.02
## 8 0.802 115.10 73.10
## 9 0.828 130.80 79.28
## 10 0.819 124.60 76.48
## 11 0.826 118.31 70.25
## 12 0.802 114.20 72.88
## 13 0.810 120.30 68.23
## 14 0.802 115.70 68.12
## 15 0.832 117.51 71.62
## 16 0.796 109.81 53.10
## 17 0.759 109.10 50.85
## 18 0.770 115.10 51.68
## 19 0.759 118.31 50.60
## 20 0.772 112.60 53.51
## 21 0.806 116.20 56.53
## 22 0.803 118.00 70.70
## 23 0.845 131.00 74.35
## 24 0.822 125.70 68.29
## 25 0.971 126.10 72.10
## 26 0.816 125.80 70.64
## 27 0.836 125.50 76.33
## 28 0.815 127.80 76.75
## 29 0.822 130.50 80.33
## 30 0.822 127.90 75.68
## 31 0.843 123.90 78.54
## 32 0.824 124.10 71.91
## 33 0.788 120.80 68.22
## 34 0.782 107.40 54.42
## 35 0.795 120.70 70.41
## 36 0.805 121.91 73.68
## 37 0.836 122.31 74.93
## 38 0.788 110.60 53.52
## 39 0.772 103.51 48.93
## 40 0.776 110.71 53.67
## 41 0.758 113.80 52.42
Utility <- read.table("Utility.txt")
Utility
## V1 V2 V3 V4 V5 V6 V7 V8
## 1 1.06 9.2 151 54.4 1.6 9077 0.0 0.628
## 2 0.89 10.3 202 57.9 2.2 5088 25.3 1.555
## 3 1.43 15.4 113 53.0 3.4 9212 0.0 1.058
## 4 1.02 11.2 168 56.0 0.3 6423 34.3 0.700
## 5 1.49 8.8 192 51.2 1.0 3300 15.6 2.044
## 6 1.32 13.5 111 60.0 -2.2 11127 22.5 1.241
## 7 1.22 12.2 175 67.6 2.2 7642 0.0 1.652
## 8 1.10 9.2 245 57.0 3.3 13082 0.0 0.309
## 9 1.34 13.0 168 60.4 7.2 8406 0.0 0.862
## 10 1.12 12.4 197 53.0 2.7 6455 39.2 0.623
## 11 0.75 7.5 173 51.5 6.5 17441 0.0 0.768
## 12 1.13 10.9 178 62.0 3.7 6154 0.0 1.897
## 13 1.15 12.7 199 53.7 6.4 7179 50.2 0.527
## 14 1.09 12.0 96 49.8 1.4 9673 0.0 0.588
## 15 0.96 7.6 164 62.2 -0.1 6468 0.9 1.400
## 16 1.16 9.9 252 56.0 9.2 15991 0.0 0.620
## 17 0.76 6.4 136 61.9 9.0 5714 8.3 1.920
## 18 1.05 12.6 150 56.7 2.7 10140 0.0 1.108
## 19 1.16 11.7 104 54.0 -2.1 13507 0.0 0.636
## 20 1.20 11.8 148 59.9 3.5 7287 41.1 0.702
## 21 1.04 8.6 204 61.0 3.5 6650 0.0 2.116
## 22 1.07 9.3 174 54.3 5.9 10093 26.6 1.306
Example 1.4
par(mfrow=c(1,1))
plot(playroll[,1]/1000000, playroll[,2], xlab="Player payroll in millions of dollars", ylab="Won-lost percentage", ylim=c(0.35,0.7), col="blue", type="b")
Example 1.5
names(paper_quality)=c("Density", "Strength(MD)", "Strength(CD)" )
ggpairs(paper_quality, upper=list(continuous = "points", combo = "facethist", discrete = "facetbar", na = "na"))
Example 1.6, Example 1.7, and EXample 1.9
names(Lizard.size)<-list("Lizard", "Mass", "SVL", "HLS", "Sex")
plot3d(Lizard.size[,2:4], size=5)
mycolors <- c('royalblue1', 'darkcyan')
Lizard.size$color<-mycolors[as.numeric(Lizard.size$Sex)+1]
plot3d(Lizard.size[,2:4], col=Lizard.size$color,size=5)
plot3d(lumber[,1:3], size=5)
plot3d(lumber[,2:4], size=5)
plot3d(lumber[,c(1:2,4)], size=5)
plot3d(lumber[,c(1,3:4)], size=5)
Example 1.10
plot(x=c(2:5), xlab="Year", ylab="Weight", y=Bear[1,3:6], ylim=c(50,270), type="b", lty=1, pch=1,col=1)
for (i in 2:7){
lines(x=c(2:5), y=Bear[i,2:5], ylim=c(50,270), type="b", lty=i,pch=i,col=i)
}
legend(2,250, c(1:7), cex=0.8, col=c(1:7), pch=1:7)
title(main="Combined growth curves for weight for seven female grizzly bears")
Example 1.11
stars(Utility)
Example 1.12
faces(Utility)
faces2(Utility)