setwd("D:/Users/hpeng/Desktop/Math4826")
library(R.matlab)
## Warning: package 'R.matlab' was built under R version 4.0.3
## R.matlab v3.6.2 (2018-09-26) successfully loaded. See ?R.matlab for help.
##
## Attaching package: 'R.matlab'
## The following objects are masked from 'package:base':
##
## getOption, isOpen
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.3
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.0.4 v dplyr 1.0.4
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.0
## Warning: package 'ggplot2' was built under R version 4.0.3
## Warning: package 'tibble' was built under R version 4.0.3
## Warning: package 'tidyr' was built under R version 4.0.3
## Warning: package 'readr' was built under R version 4.0.3
## Warning: package 'purrr' was built under R version 4.0.3
## Warning: package 'forcats' was built under R version 4.0.3
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(fpp2)
## Warning: package 'fpp2' was built under R version 4.0.3
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v forecast 8.13 v expsmooth 2.3
## v fma 2.4
## Warning: package 'forecast' was built under R version 4.0.3
## Warning: package 'fma' was built under R version 4.0.3
## Warning: package 'expsmooth' was built under R version 4.0.3
##
Example: Quarterly Iowa Nonfarm Income, in Lecture Note 3
iowa <- readMat("Iowa_income.mat")
iowa.ts <- 100*diff(log(ts(iowa$Iowa.Income)))
plot(iowa.ts)

iowa_simple_exponential <-ses(iowa.ts, initial="optimal", alpha=0.11)
summary(iowa_simple_exponential)
##
## Forecast method: Simple exponential smoothing
##
## Model Information:
## Simple exponential smoothing
##
## Call:
## ses(y = iowa.ts, initial = "optimal", alpha = 0.11)
##
## Smoothing parameters:
## alpha = 0.11
##
## Initial states:
## l = 1.4606
##
## sigma: 0.9529
##
## AIC AICc BIC
## 604.9520 605.0488 610.6404
##
## Error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 0.08288983 0.9454061 0.7267637 -Inf Inf 0.7640854 -0.02818975
##
## Forecasts:
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 129 2.61855 1.397309 3.839791 0.7508230 4.486277
## 130 2.61855 1.389943 3.847157 0.7395573 4.497542
## 131 2.61855 1.382620 3.854479 0.7283586 4.508741
## 132 2.61855 1.375341 3.861759 0.7172260 4.519874
## 133 2.61855 1.368104 3.868996 0.7061581 4.530941
## 134 2.61855 1.360909 3.876191 0.6951539 4.541946
## 135 2.61855 1.353755 3.883345 0.6842124 4.552887
## 136 2.61855 1.346640 3.890459 0.6733323 4.563767
## 137 2.61855 1.339566 3.897534 0.6625128 4.574587
## 138 2.61855 1.332530 3.904569 0.6517528 4.585347
iowa_simple_exponential$fitted
## Time Series:
## Start = 2
## End = 128
## Frequency = 1
## y
## [1,] 1.460579
## [2,] 1.354687
## [3,] 1.493270
## [4,] 1.434950
## [5,] 1.537575
## [6,] 1.385589
## [7,] 1.284457
## [8,] 1.312400
## [9,] 1.612375
## [10,] 1.370308
## [11,] 1.444399
## [12,] 1.521407
## [13,] 1.796246
## [14,] 1.849845
## [15,] 1.791483
## [16,] 1.766075
## [17,] 1.571807
## [18,] 1.511874
## [19,] 1.499027
## [20,] 1.594258
## [21,] 1.553365
## [22,] 1.422520
## [23,] 1.305922
## [24,] 1.188776
## [25,] 1.044766
## [26,] 1.035358
## [27,] 1.129513
## [28,] 1.234707
## [29,] 1.224318
## [30,] 1.348478
## [31,] 1.393345
## [32,] 1.453446
## [33,] 1.175540
## [34,] 1.453900
## [35,] 1.441625
## [36,] 1.506404
## [37,] 1.406832
## [38,] 1.383164
## [39,] 1.317546
## [40,] 1.247775
## [41,] 1.099814
## [42,] 1.201492
## [43,] 1.297854
## [44,] 1.409143
## [45,] 1.433489
## [46,] 1.568376
## [47,] 1.501210
## [48,] 1.515711
## [49,] 1.395772
## [50,] 1.288827
## [51,] 1.349742
## [52,] 1.228622
## [53,] 1.102576
## [54,] 1.107939
## [55,] 1.120159
## [56,] 1.058963
## [57,] 1.056741
## [58,] 1.114005
## [59,] 1.128325
## [60,] 1.172924
## [61,] 1.118988
## [62,] 1.103459
## [63,] 1.137414
## [64,] 1.189462
## [65,] 1.365838
## [66,] 1.323818
## [67,] 1.368844
## [68,] 1.405670
## [69,] 1.500890
## [70,] 1.558748
## [71,] 1.696177
## [72,] 1.816784
## [73,] 1.850068
## [74,] 1.945633
## [75,] 2.016522
## [76,] 2.114996
## [77,] 1.864119
## [78,] 1.773997
## [79,] 1.834614
## [80,] 1.755582
## [81,] 1.872024
## [82,] 1.873285
## [83,] 1.832392
## [84,] 1.804317
## [85,] 1.621967
## [86,] 1.703635
## [87,] 1.739514
## [88,] 1.706370
## [89,] 1.704561
## [90,] 1.831367
## [91,] 1.817134
## [92,] 1.796653
## [93,] 1.659730
## [94,] 1.843555
## [95,] 1.806181
## [96,] 1.822806
## [97,] 1.807829
## [98,] 1.875263
## [99,] 1.875835
## [100,] 2.095560
## [101,] 2.252412
## [102,] 2.282762
## [103,] 2.471790
## [104,] 2.460635
## [105,] 2.458272
## [106,] 2.591546
## [107,] 2.727442
## [108,] 2.735201
## [109,] 2.544147
## [110,] 2.548931
## [111,] 2.566180
## [112,] 2.604490
## [113,] 2.577742
## [114,] 2.566608
## [115,] 2.484911
## [116,] 2.581959
## [117,] 2.582571
## [118,] 2.626291
## [119,] 2.637106
## [120,] 2.581958
## [121,] 2.550258
## [122,] 2.551176
## [123,] 2.620935
## [124,] 2.698678
## [125,] 2.571368
## [126,] 2.606350
## [127,] 2.655015
checkresiduals(iowa_simple_exponential)

##
## Ljung-Box test
##
## data: Residuals from Simple exponential smoothing
## Q* = 10.313, df = 8, p-value = 0.2438
##
## Model df: 2. Total lags used: 10
# automatically selecting alpha and initial values
iowa_simple_exponential <-ses(iowa.ts, initial="optimal")
summary(iowa_simple_exponential)
##
## Forecast method: Simple exponential smoothing
##
## Model Information:
## Simple exponential smoothing
##
## Call:
## ses(y = iowa.ts, initial = "optimal")
##
## Smoothing parameters:
## alpha = 0.1027
##
## Initial states:
## l = 1.4597
##
## sigma: 0.9528
##
## AIC AICc BIC
## 606.9234 607.1185 615.4559
##
## Error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 0.08855563 0.9452994 0.727797 -Inf Inf 0.7651718 -0.02206369
##
## Forecasts:
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 129 2.614261 1.393158 3.835364 0.7467450 4.481777
## 130 2.614261 1.386740 3.841782 0.7369299 4.491592
## 131 2.614261 1.380356 3.848166 0.7271658 4.501356
## 132 2.614261 1.374004 3.854518 0.7174519 4.511070
## 133 2.614261 1.367685 3.860837 0.7077875 4.520734
## 134 2.614261 1.361398 3.867124 0.6981719 4.530350
## 135 2.614261 1.355142 3.873380 0.6886043 4.539918
## 136 2.614261 1.348917 3.879605 0.6790840 4.549438
## 137 2.614261 1.342722 3.885800 0.6696103 4.558912
## 138 2.614261 1.336558 3.891964 0.6601826 4.568339
iowa_simple_exponential$fitted
## Time Series:
## Start = 2
## End = 128
## Frequency = 1
## y
## [1,] 1.459688
## [2,] 1.360953
## [3,] 1.489646
## [4,] 1.435589
## [5,] 1.531301
## [6,] 1.390101
## [7,] 1.295253
## [8,] 1.320224
## [9,] 1.599379
## [10,] 1.374798
## [11,] 1.443485
## [12,] 1.515448
## [13,] 1.772560
## [14,] 1.825014
## [15,] 1.773096
## [16,] 1.751271
## [17,] 1.571485
## [18,] 1.515585
## [19,] 1.503213
## [20,] 1.591660
## [21,] 1.553763
## [22,] 1.431607
## [23,] 1.321857
## [24,] 1.210892
## [25,] 1.074221
## [26,] 1.062417
## [27,] 1.147511
## [28,] 1.243838
## [29,] 1.233205
## [30,] 1.348168
## [31,] 1.390073
## [32,] 1.446499
## [33,] 1.187850
## [34,] 1.446373
## [35,] 1.435689
## [36,] 1.496755
## [37,] 1.404818
## [38,] 1.382936
## [39,] 1.321720
## [40,] 1.256176
## [41,] 1.117225
## [42,] 1.210332
## [43,] 1.299356
## [44,] 1.403065
## [45,] 1.426410
## [46,] 1.553023
## [47,] 1.491915
## [48,] 1.506403
## [49,] 1.395422
## [50,] 1.295650
## [51,] 1.351800
## [52,] 1.238550
## [53,] 1.119896
## [54,] 1.123123
## [55,] 1.132969
## [56,] 1.074541
## [57,] 1.070868
## [58,] 1.122861
## [59,] 1.135316
## [60,] 1.176221
## [61,] 1.125546
## [62,] 1.110380
## [63,] 1.141359
## [64,] 1.189529
## [65,] 1.354128
## [66,] 1.316115
## [67,] 1.358928
## [68,] 1.394314
## [69,] 1.484346
## [70,] 1.540042
## [71,] 1.670221
## [72,] 1.785445
## [73,] 1.819725
## [74,] 1.912029
## [75,] 1.981637
## [76,] 2.077121
## [77,] 1.846873
## [78,] 1.764535
## [79,] 1.822078
## [80,] 1.749607
## [81,] 1.858893
## [82,] 1.861418
## [83,] 1.824472
## [84,] 1.799083
## [85,] 1.629438
## [86,] 1.704890
## [87,] 1.738246
## [88,] 1.707444
## [89,] 1.705645
## [90,] 1.823878
## [91,] 1.811364
## [92,] 1.792842
## [93,] 1.665447
## [94,] 1.836419
## [95,] 1.802271
## [96,] 1.818188
## [97,] 1.804684
## [98,] 1.867942
## [99,] 1.869227
## [100,] 2.074969
## [101,] 2.223469
## [102,] 2.254765
## [103,] 2.434054
## [104,] 2.427518
## [105,] 2.428711
## [106,] 2.556128
## [107,] 2.686591
## [108,] 2.698026
## [109,] 2.523537
## [110,] 2.530118
## [111,] 2.548147
## [112,] 2.585752
## [113,] 2.562712
## [114,] 2.553865
## [115,] 2.478927
## [116,] 2.570113
## [117,] 2.571901
## [118,] 2.613799
## [119,] 2.625175
## [120,] 2.574932
## [121,] 2.546068
## [122,] 2.547355
## [123,] 2.612852
## [124,] 2.686237
## [125,] 2.568699
## [126,] 2.601621
## [127,] 2.647524
checkresiduals(iowa_simple_exponential)

##
## Ljung-Box test
##
## data: Residuals from Simple exponential smoothing
## Q* = 10.194, df = 8, p-value = 0.2517
##
## Model df: 2. Total lags used: 10
Example: Weekly Thermostat Sales, in Lecture Note 3
therm<-readMat("Thermostat_Sales.mat")
therm <-ts(t(therm$Thermostat.Sales))
plot(therm)

therm_Double_Exponential <-holt(therm, inital="optimal")
summary(therm_Double_Exponential)
##
## Forecast method: Holt's method
##
## Model Information:
## Holt's method
##
## Call:
## holt(y = therm, inital = "optimal")
##
## Smoothing parameters:
## alpha = 0.2467
## beta = 0.0226
##
## Initial states:
## l = 199.0721
## b = -0.1157
##
## sigma: 28.4509
##
## AIC AICc BIC
## 559.5132 560.8175 569.2694
##
## Error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 3.898555 27.33474 21.73306 0.3575591 9.938754 0.8049281 0.08858778
##
## Forecasts:
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 53 320.2519 283.7906 356.7132 264.4892 376.0146
## 54 324.7216 286.9611 362.4820 266.9719 382.4712
## 55 329.1913 289.9592 368.4234 269.1910 389.1916
## 56 333.6609 292.7868 374.5351 271.1493 396.1726
## 57 338.1306 295.4477 380.8136 272.8526 403.4086
## 58 342.6003 297.9468 387.2538 274.3087 410.8919
## 59 347.0700 300.2902 393.8498 275.5265 418.6135
## 60 351.5397 302.4842 400.5952 276.5157 426.5636
## 61 356.0094 304.5353 407.4834 277.2866 434.7321
## 62 360.4791 306.4503 414.5079 277.8491 443.1090
therm_Double_Exponential$fitted
## Time Series:
## Start = 1
## End = 52
## Frequency = 1
## y
## [1,] 198.9564
## [2,] 200.7376
## [3,] 212.7019
## [4,] 206.2860
## [5,] 196.6623
## [6,] 186.9019
## [7,] 183.0259
## [8,] 188.0493
## [9,] 194.6860
## [10,] 193.9732
## [11,] 203.3790
## [12,] 206.2188
## [13,] 203.1025
## [14,] 192.4242
## [15,] 190.9637
## [16,] 204.6316
## [17,] 206.3920
## [18,] 207.2384
## [19,] 208.9479
## [20,] 210.0128
## [21,] 200.8499
## [22,] 198.9732
## [23,] 208.2198
## [24,] 194.7615
## [25,] 197.2125
## [26,] 194.4099
## [27,] 185.1515
## [28,] 180.3466
## [29,] 186.7724
## [30,] 190.7917
## [31,] 204.6443
## [32,] 208.9674
## [33,] 202.7328
## [34,] 204.0309
## [35,] 206.4000
## [36,] 224.9864
## [37,] 233.3406
## [38,] 243.7358
## [39,] 250.9024
## [40,] 249.7286
## [41,] 254.3910
## [42,] 270.8442
## [43,] 278.3101
## [44,] 286.4415
## [45,] 289.7075
## [46,] 285.2152
## [47,] 296.4989
## [48,] 301.0404
## [49,] 307.3100
## [50,] 305.0236
## [51,] 310.0295
## [52,] 306.2136
checkresiduals(therm_Double_Exponential)

##
## Ljung-Box test
##
## data: Residuals from Holt's method
## Q* = 12.313, df = 6, p-value = 0.05534
##
## Model df: 4. Total lags used: 10
Example: Car Sales, in Lecture Note 3
car <- readMat("Car_Sales.mat")
car.ts<-ts(t(car$Car.Sales))
plot(car.ts)

car.ts<-ts(t(car$Car.Sales), frequency=12)
car_seasonal_indication<-hw(car.ts, h=12, seasonal="additive")
summary(car_seasonal_indication)
##
## Forecast method: Holt-Winters' additive method
##
## Model Information:
## Holt-Winters' additive method
##
## Call:
## hw(y = car.ts, h = 12, seasonal = "additive")
##
## Smoothing parameters:
## alpha = 0.1724
## beta = 1e-04
## gamma = 1e-04
##
## Initial states:
## l = 9.8447
## b = 0.0879
## s = -2.5166 -0.133 -0.5023 -4.6066 -3.3596 -0.9236
## 3.7924 6.5123 5.0313 2.9607 -2.7787 -3.4762
##
## sigma: 1.4534
##
## AIC AICc BIC
## 603.1170 609.9170 648.7133
##
## Error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set -0.03300989 1.341429 1.097267 -0.7587655 8.322427 0.687933
## ACF1
## Training set 0.1055962
##
## Forecasts:
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## Jan 10 15.33793 13.47532 17.20054 12.48932 18.18655
## Feb 10 16.12280 14.23268 18.01291 13.23212 19.01347
## Mar 10 21.94936 20.03210 23.86662 19.01717 24.88155
## Apr 10 24.10752 22.16346 26.05158 21.13434 27.08071
## May 10 25.67613 23.70559 27.64666 22.66245 28.68980
## Jun 10 23.04376 21.04706 25.04046 19.99008 26.09744
## Jul 10 18.41532 16.39277 20.43788 15.32209 21.50855
## Aug 10 16.06710 14.01898 18.11522 12.93477 19.19943
## Sep 10 14.90731 12.83390 16.98071 11.73631 18.07831
## Oct 10 19.09938 17.00096 21.19781 15.89012 22.30864
## Nov 10 19.55579 17.43261 21.67896 16.30867 22.80291
## Dec 10 17.25979 15.11211 19.40747 13.97519 20.54438
car_seasonal_indication$fitted
## Jan Feb Mar Apr May Jun Jul
## 1 6.456474 7.258028 13.338884 15.271140 16.689018 13.694392 9.082699
## 2 7.293317 8.069029 14.120946 15.885574 17.091647 14.258318 9.554229
## 3 8.188404 9.403104 15.496028 17.603777 19.070483 16.754484 12.032279
## 4 9.341072 10.388831 16.314588 18.143833 20.098384 17.471656 12.903455
## 5 11.002945 12.006715 17.913117 20.250372 21.993856 19.366285 14.603720
## 6 11.788467 12.641638 18.523673 20.935717 22.882468 20.364625 15.889806
## 7 14.258887 14.771967 20.252076 22.411222 23.932841 20.739865 15.973031
## 8 14.106488 14.567518 19.883540 22.232172 23.362114 20.853837 16.442892
## 9 13.804235 14.486229 20.271799 22.406682 23.856930 21.611046 16.891255
## Aug Sep Oct Nov Dec
## 1 6.805959 5.895884 10.286887 10.616174 8.104570
## 2 7.479598 6.405434 10.804723 11.125331 9.111276
## 3 9.703585 8.422996 12.122543 12.467953 10.135552
## 4 10.445842 8.975543 12.992598 13.611816 11.716982
## 5 12.354562 10.842733 15.026633 15.437288 12.851622
## 6 13.421104 12.494976 16.412052 16.993976 14.820309
## 7 13.523844 12.638677 16.962819 17.277773 15.031453
## 8 13.711043 12.503300 16.883766 17.393139 14.877315
## 9 14.737984 13.920366 18.192328 19.192660 16.549992
plot(car_seasonal_indication$fitted)

checkresiduals(car_seasonal_indication)

##
## Ljung-Box test
##
## data: Residuals from Holt-Winters' additive method
## Q* = 30.28, df = 6, p-value = 3.478e-05
##
## Model df: 16. Total lags used: 22
Example: New Plant and Equipment Expenditures, in Lecture Note 3
New_Plant <- readMat("New_Plant.mat")
plant_training<-ts(t(log(New_Plant$New.Plant))[1:44], frequency=4)
plant_seasonal<-hw(plant_training, seasonal="additive", h=8)
summary(plant_seasonal)
##
## Forecast method: Holt-Winters' additive method
##
## Model Information:
## Holt-Winters' additive method
##
## Call:
## hw(y = plant_training, h = 8, seasonal = "additive")
##
## Smoothing parameters:
## alpha = 0.7256
## beta = 0.0042
## gamma = 0.2744
##
## Initial states:
## l = 2.3931
## b = 0.0212
## s = 0.0989 -0.0065 0.0261 -0.1184
##
## sigma: 0.0245
##
## AIC AICc BIC
## -150.5891 -145.2950 -134.5314
##
## Error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 0.0009514271 0.02219517 0.01822413 0.03969571 0.6348927 0.2073649
## ACF1
## Training set 0.409508
##
## Forecasts:
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 12 Q1 3.286563 3.255116 3.318009 3.238470 3.334656
## 12 Q2 3.427194 3.388264 3.466125 3.367655 3.486733
## 12 Q3 3.426368 3.381108 3.471627 3.357149 3.495586
## 12 Q4 3.548935 3.498068 3.599801 3.471141 3.626728
## 13 Q1 3.372265 3.312181 3.432348 3.280375 3.464154
## 13 Q2 3.512896 3.448387 3.577405 3.414237 3.611555
## 13 Q3 3.512070 3.443373 3.580766 3.407008 3.617131
## 13 Q4 3.634636 3.561951 3.707322 3.523474 3.745799
plant_seasonal$fitted
## Qtr1 Qtr2 Qtr3 Qtr4
## 1 2.295939 2.466550 2.459491 2.586201
## 2 2.399725 2.577159 2.590090 2.737117
## 3 2.567543 2.755206 2.754803 2.896347
## 4 2.706594 2.851881 2.807356 2.921233
## 5 2.697572 2.880037 2.825686 2.951419
## 6 2.752546 2.918779 2.930212 3.079427
## 7 2.882758 3.014605 3.016055 3.128773
## 8 2.900188 3.033097 3.028950 3.114920
## 9 2.940084 3.116139 3.094653 3.202745
## 10 3.040680 3.205749 3.207993 3.342029
## 11 3.168789 3.316997 3.335795 3.462843
checkresiduals(plant_seasonal)

##
## Ljung-Box test
##
## data: Residuals from Holt-Winters' additive method
## Q* = 31.596, df = 3, p-value = 6.366e-07
##
## Model df: 8. Total lags used: 11
accuracy(plant_seasonal, log(New_Plant$New.Plant)[45:52], frequency =4)
## ME RMSE MAE MPE MAPE
## Training set 0.0009514271 0.02219517 0.01822413 0.03969571 0.6348927
## Test set -0.0964436478 0.10020992 0.09644365 -2.85795794 2.8579579
## MASE ACF1
## Training set 0.1562626 0.409508
## Test set 0.8269550 NA