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Abstract

Numerical methods for solving the continuum model of the dynamics of the

molecular-beam epitaxy (MBE) require very large time simulation, and therefore

large time steps become necessary. The main purpose of this work is to construct

and analyze highly stable time discretizations which allow much larger time step than

that for a standard implicit-explicit approach. To this end, an extra term, which is

consistent with the order of the time discretization, is added to stabilize the numer-

ical schemes. Then the stability properties of the resulting schemes are established

rigorously. Numerical experiments are carried out to support the theoretical claims.

The proposed methods are also applied to simulate the MBE models with large solu-

tion times. The power laws for the coarsening process are obtained and are compared

with previously published results.

1 Introduction

There has been a significant research interest in the dynamics of the molecular beam epitaxy

(MBE) growth lately. The MBE technique is among the most refined methods for the
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growth of thin solid films and it is of great importance for applied studies, see, e.g., [1, 16,

22]. The evolution of the surface morphology during epitaxial growth results in a delicate

relation between the molecular flux and the relaxation of the surface profile through surface

diffusion of adatoms. It occurs on time scale and length scale that may span several orders

of magnitude. Different kinds of model have been used to describe such phenomena, which

typically include: atomistic models, continuum models and hybrid model. The atomistic

models are usually implemented in the form of molecular dynamics or kinetic Monte Carlo

simulations [17, 9, 4]. The continuum models are based on partial differential equations,

and are appropriate mainly to investigate the temporal evolution of the MBE instability

at large time and length scales [11, 24]. The hybrid model, introduced recently in [3, 8],

can be considered as a compromise between atomistic models and continuum models.

We are interested in the continuum models for the evolution of the molecular beam

epitaxy growth. Let h(x, t) be the epitaxy surface height with x ∈ R
2 and t ≥ 0. Under

typical conditions for MBE growth, the height evolution equation can be written under

mass conservation form (see, e.g., [14]):

ht = −∇ · J(∇h), (1.1)

where J is the surface current which can be decomposed into a sum of two currents

J = JSD + JNE, (1.2)

where JSD is the equilibrium surface current describing the surface diffusion and JNE is the

non-equilibrium diffusion current taking into account the Ehrlich-Schwoebel effect [5, 18].

The surface diffusion current has the form:

JSD = δ∇(∆h), (1.3)

where δ is the surface diffusion constant. By using effective free energy formulation, the

non-equilibrium diffusion current under consideration can be written in the form

JNE(M) = −∂U(M)

∂M
, (1.4)

where M = (M1, M2) := ∇h is the slope vector, U(M) is the potential depending only

on the slope vector. Evidently, the term JNE helps the system (1.1) to evolve toward the

states in which the slope M attains the minimum of U(M) because that JNE vanishes at

the minima of U(M). The minima of this potential is the preferred value of the slope.

Consequently, the corresponding system is the so-called epitaxial growth model with slope

selection.

The continuum model (1.1) has been extensively applied to modeling interfacial coars-

ening dynamics in epitaxial growth with slope selection, see, e.g., [12, 14, 24]. In (1.1),

the fourth-order term models surface diffusion, and the nonlinear second-order term mod-

els the well known Ehrlich-Schowoebel effect [5, 18], which gives rise to instabilities in the
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evolution of the surface morphology. The instability then leads to the formation of mounds

and pyramids on the growing surface. These pyramid-like structures have been reported

in many experiments and numerical simulations, see, e.g., [14, 20, 23]. It is found that the

lateral width λ and the height w of these pyramids grow in time as same power laws as

power laws with the same component. Thus, the ratio w/λ, corresponding to the pyramid

slope, approaches a constant at large times. Therefore, there is a slope selection in a typical

MBE growth. The corresponding coarsening exponents were found from experiments to

depend on the symmetry of the surface. Two typical values of the coarsening exponent

have been found, namely 1

4
(see, e.g.,[14, 20]) and 1

3
(see, e.g., [14, 23]). Some mathematical

justification of such prediction was given in [10]. We also point out that the continuum

model (1.1)-(1.4) has been derived by Ortiz et al. [15] by using a series expansion of the

deposition flux in powers of the surface gradient. They also provided an explicit construc-

tion for the pyramid-like coarsening, which allows to predict characteristic power law for

the pyramid size growth. However, it is difficult to provide growing details, especially for

complex thin-film systems.

Numerical simulations with the continuum models are appropriate for investigating

the surface growth instability at large times. The direct numerical simulation for (1.1)-

(1.4) with different non-equilibrium diffusion currents was performed by Siegert [19], who

obtained a power law close to 1

4
. Moldovan and Golubovic [14] carried out a very compre-

hensive numerical simulations by using a kinetic scaling theory and obtained an 1

3
power

law. It should be pointed out that the simulations reported in [14] were not completely

based on a continuum model. Instead they solved a so-called type-A dynamics equations

directly on a hexagonal grid. More recently, the well-posedness of the initial-boundary-

value problem of (1.1) is studied by Li and Liu [12] using the perturbation analysis and

Galerkin spectral approximations. In [13], they used variational techniques to obtain some

asymptotic results for a no-slope-selection model. Moreover, several scaling laws have been

derived in [13].

The main purpose of this study is to provide efficient numerical schemes for solving

(1.1), with particular emphasis on the use of large time steps. To obtain meaningful re-

sults for power laws, the integration times in simulations have to be very large (say, in the

order of 104). As a result, it is reasonable to employ larger time steps and small number

of grid points in computations, provided that stability and accuracy can be preserved. It

is observed that most of the existing continuum model simulations have used explicit in-

tegration method in time and finite difference type approximation in space. To maintain

the stability and to achieve high approximation accuracy, the number of spatial grid points

must be large and the time step has to be small. Even with rapidly increasing computa-

tional resources, explicit schemes are still limited to simulate early surface evolution and

therefore small length scale [12].

The main objectives of this work are three folds: Firstly, we introduce an accurate

and efficient semi-implicit Fourier pseudo-spectral method for solving the time-dependent
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nonlinear diffusion equations (1.1). To approximate the time derivatives, a backward differ-

entiation is employed. More precisely, the fourth order term is treated implicitly to reduce

the associated stability constraints, while the nonlinear second-order terms are treated ex-

plicitly in order to avoid solving the nonlinear equations at each time step. Secondly, a

stabilization second order term is added to the discretized system, which increases the time

step dramatically. In real applications, the surface diffusion constant δ may be very small

after dimensional scaling. Consequently, direct use of the standard semi-implicit method

still suffers from severe stability restriction on the time step. In order to overcome this

difficulty, we introduce a stabilization term with constant coefficient A, which allows us

to increase the time step significantly. Note that similar technique has been used by Zhu

et al. in the simulation of the Cahn-Hilliard equation [25]. Our main contribution is to

show rigorously that the resulting numerical scheme is stable if an appropriate constant

A is chosen. Justification of this stabilization technique is provided by considering several

numerical tests. Finally, we perform some numerical simulations for the interfacial coars-

ening dynamics using our proposed schemes. Our numerical results yield an 1

3
power law

for the isotropic symmetry surface and 1

4
for the square symmetry surface.

It is worthwhile to mention some recent papers by Feng and Prohl on the numerical

analysis for Cahn-Hilliard and Allen-Cahn equations, see, e.g., [6]. They also studied

stability issues: the continuous dependence of solutions on the initial data. This is different

from our stability concept which seems more related to the decay of energy. They mainly

prove that the stability constant increases to infinite algebraically as a small parameter

(similar to our surface diffusion constant δ in (1.3) goes to 0. This is a big step forward,

since usually the blow-up of the constant is exponential, if one uses the Gronwall inequality

- a standard method.

The organization of the paper is as follows. In Section 2, we construct highly stable semi-

implicit Fourier spectral methods for solving (1.1), which is of first order accuracy in time.

To improve the numerical stability, an O(∆t) term is added. Detailed stability analysis

based on the energy method is provided to show that the proposed methods allow large time

step, and therefore are useful for large time simulations. The second-order semi-implicit

methods are investigated in Section 3. It will be demonstrated that the stability analysis

for higher order time stepping methods is much more difficult. Numerical experiments for

model problems are presented in Section 4. Section 5 reports some computational results

for the coarsening dynamics using the numerical schemes allowing large time steps. Some

concluding remarks are given in the final section.
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2 Semi-implicit time discretization: first order meth-

ods

To demonstrate the main ideas in scheme designing and stability analysis, we will use two

model equations in this work. The first one is of the from

ht = −δ∆2h −∇ · [(1 − |∇h|2)∇h], (x, t) ∈ Ω × (0, T ]. (2.1)

The second model equation is of the form

ht = −δ∆2h − ((1 − |hx|2)hx)x − ((1 − |hy|2)hy)y, (x, t) ∈ Ω × (0, T ]. (2.2)

Hereafter, we use ht to denote ∂h
∂t

,∇h = (hx, hy). Both model problems are subject to the

periodic boundary conditions and suitable initial data, where Ω = (0, L)2 with L > 0. The

model (2.1) corresponds to the isotropic surface current, while (2.2) represents the simplest

square surface current.

For the MBE simulations, large computational domain is necessary in order to minimize

the effect of periodicity assumption and to collect enough statistical information such as

mean surface height and width of the pyramid-like structures. Moreover, sufficiently long

integration time is necessary in order to detect the epitaxy growth behaviors and to reach

the physical scaling regime. On the other hand, to carry out numerical simulations with

large time and large computational domain, highly stable and accurate numerical methods

are required. To this end, it is natural to use the Fourier spectral approach in space which

has been found extremely efficient for periodic problems. As for stability issue, the implicit

treatment for the fourth order terms is employed, and more importantly, a special trick to

handle the nonlinear second-order terms is used. The goal is to significantly increase the

allowed time-steps.

We first consider the MBE model with the isotropic symmetry current, namely, the

equation (2.1). A classical first order semi-implicit scheme is of the form

hn+1 − hn

∆t
+ δ∆2hn+1 = −∇ ·

[
(1 − |∇hn|2)∇hn

]
, n ≥ 0. (2.3)

It is expected that the implicit treatment for the fourth order term in (2.3) allows to relax

the time-step restriction. However, numerical experiments demonstrate that larger time-

step can not be used for the scheme (2.3) when δ is small, see, e.g., [12]. To improve this,

an O(∆t) term is added into the scheme (2.3):

hn+1 − hn

∆t
+ δ∆2hn+1 − A∆hn+1 = −∇ ·

[
(1 − |∇hn|2 + A)∇hn

]
, n ≥ 0, (2.4)

where A is a positive constant to be determined later, hn ≡ hn(x) is an approximation of

h(x, t) at t = tn. The initial data h0 is given by the initial condition. The purpose for

adding the extra terms is to improve the stability condition so that larger time-steps can
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be used. This will be justified theoretically in this section, and will be demonstrated by

our numerical results in Section 4.

In order to study its stability property, we will use a discrete energy estimate. To this

end, we first state the following known result.

Lemma 2.1 (Energy Identities, [12]) If h(x, t) is a solution of (2.1), then the following

energy identities hold

d

dt
‖h‖2 + 4E(h) + ‖∇h‖4

L4 = |Ω|, (2.5)

d

dt
E(h) + ‖ht‖2 = 0, (2.6)

where ‖ · ‖ is the standard L2-norm in Ω, Lp is the standard Lp-norm, and

E(h) =

∫

Ω

[
1

4
(|∇h|2 − 1)2 +

δ

2
|∆h|2

]
dx. (2.7)

We briefly sketch the proof of (2.5) and (2.6), which is useful in deriving its discrete

counterparts. It follows from (2.1) that

〈ht, ϕ〉 = −
〈
∇ · [(1 − |∇h|2)∇h + δ∇∆h], ϕ

〉
,

where < ·, · > denotes the standard inner product in the L2 space. It can be verified

directly that setting ϕ = h gives (2.5) and setting ϕ = ht yields (2.6).

Theorem 2.1 If the constant A in (2.4) is sufficiently large, then the following energy

inequality holds

E(hn+1) ≤ E(hn), (2.8)

where E is defined by (2.7) and hn is computed by (2.4). Moreover, if the numerical solution

is convergent in W 1,∞(Ω× (0, T ]) as ∆t → 0, then the constant A can be chosen to satisfy

A ≥ 3

2
|∇h|2 − 1

2
, a.e. in Ω × (0, T ], (2.9)

where h(x, t) is a solution of (2.1).

Proof.For any L-periodic H2(Ω) function ϕ, it follows from (2.4) that

1

∆t

〈
hn+1 − hn, ϕ

〉
+ δ

〈
∆hn+1, ∆ϕ

〉
+ A

〈
∇(hn+1 − hn), ∇ϕ

〉
+ I(ϕ) = 0, (2.10)

where

I(ϕ) :=
〈
(|∇hn|2 − 1)∇hn, ∇ϕ

〉
.
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Letting ϕ = δth
n := hn+1 − hn gives

1

∆t
‖δth

n‖2 + δ
〈
∆hn+1, ∆δth

n
〉

+ A
〈
∇δth

n, ∇δth
n
〉

+ I(δth
n) = 0. (2.11)

Observe that

I(δth
n) =

〈
|∇hn|2 − 1,∇hn · ∇hn+1 − |∇hn|2

〉

=

〈
|∇hn|2 − 1,−1

2
|∇δth

n|2 +
1

2
|∇hn+1|2 − 1

2
|∇hn|2

〉

= −1

2

〈
|∇hn|2 − 1, |∇δth

n|2
〉

+
1

2

〈
(|∇hn|2 − 1)(|∇hn+1|2 − |∇hn|2), 1

〉

= −1

2

〈
|∇hn|2 − 1, |∇δth

n|2
〉

+
1

2

〈
|∇hn|2 · |∇hn+1|2, 1

〉

+
1

2

〈
−|∇hn|4 − |∇hn+1|2 + |∇hn|2, 1

〉
.

Using the identity 2a2b2 = −(a2 − b2)2 + a4 + b4 to the second last term above with

a = |∇hn+1| and b = |∇hn|, we obtain

I(δth
n) = −1

2

〈
|∇hn|2 − 1, |∇δth

n|2
〉
− 1

4

〈
(|∇hn+1|2 − |∇hn|2)2, 1

〉

+
1

4

〈
|∇hn+1|4 + |∇hn|4, 1

〉
+

1

2

〈
−|∇hn|4 − |∇hn+1|2 + |∇hn|2, 1

〉

=

〈
−1

2
(|∇hn|2 − 1) − 1

4
|∇hn+1 + ∇hn|2, |∇δth

n|2
〉

+
1

4

〈
|∇hn+1|4 − |∇hn|4 − 2|∇hn+1|2 + 2|∇hn|2, 1

〉

=

〈
−1

2
(|∇hn|2 − 1) − 1

4
|∇hn+1 + ∇hn|2, |∇δth

n|2
〉

(2.12)

+
1

4

(
‖|∇hn+1|2 − 1‖2 − ‖|∇hn|2 − 1‖2

)
.

Combining (2.11) and (2.12) yields

1

∆t
‖δth

n‖2 + δ
〈
∆hn+1, ∆δth

n
〉

+
1

4

(
‖|∇hn+1|2 − 1‖2 − ‖|∇hn|2 − 1‖2

)
(2.13)

+

〈
A − 1

2
(|∇hn|2 − 1) − 1

4
|∇hn+1 + ∇hn|2, |δth

n|2
〉

= 0.

Note that the last term in (2.13) can be made non-negative provided that

A ≥ max
x∈Ω

{
1

2
(|∇hn|2 − 1) +

1

4
|∇hn+1 + ∇hn|2

}
. (2.14)

Observe that

δ
〈
∆hn+1, ∆δth

n
〉

= δ
〈
∆hn+1, ∆hn+1 − ∆hn

〉
(2.15)

≥ δ

2
‖∆hn+1‖2 − δ

2
‖∆hn‖2.
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Consequently, Theorem 2.1 follows from (2.13)-(2.15). �

We now consider the MBE model with the square symmetric surface (2.2). An energy

equality similar to that for the model (2.1) can be established.

Lemma 2.2 If h(x, t) is a solution of (2.2), then the following energy equalities hold:

d

dt
E2(h) + ‖ht‖2 = 0, (2.16)

d

dt
‖h‖2 + 4E2(h) + ‖hx‖4

L4 + ‖hy‖4
L4 = 2|Ω|, (2.17)

where

E2(h) =

∫

Ω

{
δ

2
|∆h|2 +

1

4

[
(h2

x − 1)2 + (h2
y − 1)2

]}
dx . (2.18)

Proof.The equation (2.2) is equivalent to

ht + δ∆2h = −∇ · J, (2.19)

where J = (J1, J2) is given by

J1 =
(
1 − h2

x

)
hx , J2 = (1 − h2

y)hy .

Multiplying both sides of (2.19) with ht gives

‖ht‖2 + δ 〈∆h, (∆h)t〉 = 〈J, (∇h)t〉 . (2.20)

Observe

〈J, (∇h)t〉 =
〈
(1 − h2

x)hx, hxt

〉
+

〈
(1 − h2

y)hy, hyt

〉

= −1

4

d

dt

∫

Ω

[
(h2

x − 1)2 + (h2
y − 1)2

]
dx.

The above result and (2.20) yield (2.16). Similarly, the energy equality (2.17) can be

derived by multiplying (2.19) with h. �

Similar to the scheme (2.4), a first-order scheme is constructed for the MBE model

(2.2):

hn+1 − hn

∆t
+ δ∆2hn+1 − A∆hn+1 (2.21)

= −A∆hn −
[
(1 − (hn

x)2)hn
x

]
x
−

[
(1 − (hn

y )2)hn
y

]
y

.

Theorem 2.2 If A in (2.21) is chosen sufficiently large, then the following energy inequal-

ity holds

E2(h
n+1) ≤ E2(h

n), (2.22)

8



where E2 is defined by (2.18) and hn is computed by (2.21). Moreover, if the numerical

solution of (2.21) is convergent, then A can be chosen to satisfy

A ≥ max
{3

2
h2

x −
1

2
,

3

2
h2

y −
1

2

}
, a.e. in Ω × (0, T ], (2.23)

where h(x, t) is the solution of (2.2).

Proof.The proof follows the same manner of that for Theorem 2.1. By direct computa-

tions, we can obtain

1

∆t
‖δth

n‖2 + E2(h
n+1) − E2(h

n)

+

∫ [
A − 1

2

(
(hn

x)2 − 1
)
− 1

4
(hn+1

x + hn
x)2

]
(hn+1

x − hn
x)2 dx

+

∫ [
A − 1

2

(
(hn

y )2 − 1
)
− 1

4
(hn+1

y + hn
y )2

]
(hn+1

y − hn
y )2 dx = 0.

It follows from the above result that (2.22) holds provided that

A ≥ max
x∈Ω

{
1

2

(
(hn

x)2 − 1
)
− 1

4

(
hn+1

x + hn
x

)2

}
,

and

A ≥ max
x∈Ω

{
1

2

(
(hn

y )2 − 1
)
− 1

4

(
hn+1

y + hn
y

)2

}
.

If the numerical solution is convergent, then the above conditions become (2.23). �

3 Semi-implicit time discretization: higher order meth-

ods

3.1 Second-order scheme: BD2/EP2

By combining a second order backward differentiation (BD2) for the time derivative term

and a second order extrapolation (EP2) for the explicit treatment of the nonlinear term,

we arrive at a second-order scheme (BD2/EP2) for Eq. (2.1):

3hn+1 − 4hn + hn−1

2∆t
+ δ∆2hn+1 − A∆hn+1

= −2A∆hn + A∆hn−1 −∇ · [(1 − |∇(2hn − hn−1)|2)∇(2hn − hn−1)], ∀n ≥ 1.

(3.1)

As usual, to start the iteration h0(x) is given by the initial condition and h1(x) is computed

by the first order scheme (2.4).
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Theorem 3.1 If the constant A in (3.1) is sufficiently large, then the following energy

inequality holds

Ẽn+1 ≤ Ẽn + O(∆t2), (3.2)

where Ẽn is defined by

Ẽn =
1

∆t
‖hn − hn−1‖2 +

1

4

∥∥|∇hn|2 − 1
∥∥2

+
δ

2
‖∆hn‖2 +

A

2
‖∇(hn − hn−1)‖2. (3.3)

In particular, we can obtain

E(hn) ≤ E(h1) + O(∆t), (3.4)

where E is defined by (2.7). Moreover, if the numerical solution of (3.1) is convergent in

W 1,∞(Ω × (0, T ]) as ∆t → 0, then the constant A can be chosen to satisfy

A ≥ 3|∇h|2 − 1, a.e. in Ω × (0, T ], (3.5)

where h(x, t) is a solution of (2.1).

Proof: For ease of notation, let δth
n = hn+1 − hn and δtth

n = hn+1 − 2hn + hn−1.

Multiplying both sides of (3.1) by δth
n and integrating the resulting equation in Ω give

In
1 + In

2 + In
3 = In

4 , (3.6)

where

In
1 :=

1

2∆t
〈3δth

n − δth
n−1 , δth

n〉,
In
2 := δ〈∆2hn+1 , δth

n〉, In
3 := −A 〈∆δtth

n , δth
n〉 ,

In
4 := −

〈
∇ · [(1 − |∇(2hn − hn−1)|2)∇(2hn − hn−1)] , δth

n
〉
.

We now estimate them term by term. The estimate for the first three terms is straight

forward:

In
1 ≥ 5

4∆t
‖δth

n‖2 − 1

4∆t
‖δth

n−1‖2 ≥ 1

∆t
‖δth

n‖2 − 1

∆t
‖δth

n−1‖2, (3.7)

In
2 = δ

〈
∆hn+1 , ∆hn+1 − ∆hn

〉
≥ δ

2
‖∆hn+1‖2 − δ

2
‖∆hn‖2, (3.8)

In
3 = A 〈δtt∇hn , δt∇hn〉 = A

〈
δt∇hn − δt∇hn−1 , δt∇hn

〉
(3.9)

=
A

2
‖δt∇hn‖2 − A

2
‖δt∇hn−1‖2 +

A

2
‖δtt∇hn‖2.

To estimate In
4 , we need the following two identities. On one hand, we have

∇(2hn − hn−1) · ∇(hn+1 − hn) (3.10)

= ∇(2hn − hn−1) · ∇hn+1 −∇(2hn − hn−1) · ∇hn

= −1

2
|δtt∇hn|2 +

1

2
|∇(2hn − hn−1)|2 +

1

2
|∇hn+1|2 −∇(2hn − hn−1) · ∇hn,
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and on the other hand,

∇(2hn − hn−1) · ∇(hn+1 − hn) = ∇hn · ∇(hn+1 − hn) + δt∇hn · δt∇hn−1 (3.11)

=
1

2
|∇hn+1|2 − 1

2
|∇hn|2 − 1

2
|δt∇hn|2 − 1

2
|δtt∇hn|2 +

1

2
|δt∇hn|2 +

1

2
|δt∇hn−1|2

=
1

2
|∇hn+1|2 − 1

2
|∇hn|2 − 1

2
|δtt∇hn|2 +

1

2
|δt∇hn−1|2.

Using (3.10) gives

〈
−|∇(2hn − hn−1)|2∇(2hn − hn−1) , ∇(hn+1 − hn)

〉
(3.12)

=
1

2

〈
|∇(2hn − hn−1)|2 , |δtt∇hn|2

〉
+ Jn

4 ,

where

Jn
4 :=

〈
−|∇(2hn − hn−1)|2 ,

1

2
|∇(2hn − hn−1)|2 +

1

2
|∇hn+1|2 −∇(2hn − hn−1) · ∇hn

〉

=
1

2

〈
1, −|∇(2hn − hn−1)|4

〉
+

1

2

〈
−|∇(2hn − hn−1)|2 , |∇hn+1|2

〉

+
〈
|∇(2hn − hn−1)|2 , ∇(2hn − hn−1) · ∇hn

〉

= −3

4

〈
1, |∇(2hn − hn−1)|4

〉
+

1

4
‖|∇(2hn − hn−1)|2 − |∇hn+1|2‖2

−1

4

〈
1, |∇hn+1|4

〉
+

〈
|∇(2hn − hn−1)|2 , ∇(2hn − hn−1) · ∇hn

〉
.

Using the Schwartz inequality to the last term above gives

〈
|∇(2hn − hn−1)|2 , ∇(2hn − hn−1) · ∇hn

〉

≤ 1

2

〈
|∇(2hn − hn−1)|2 , |∇(2hn − hn−1)|2

〉
+

1

2

〈
|∇(2hn − hn−1)|2 , |∇hn|2

〉

≤ 1

2

〈
1, |∇(2hn − hn−1)|4

〉
+

1

4

〈
1, |∇(2hn − hn−1)|4

〉
+

1

4

〈
1, |∇hn|4

〉

=
3

4

〈
1, |∇(2hn − hn−1)|4

〉
+

1

4

〈
1, |∇hn|4

〉
.

Combining the above two results gives

Jn
4 ≤ 1

4
‖|∇(2hn − hn−1)|2 − |∇hn+1|2‖2 − 1

4

〈
1, |∇hn+1|4

〉
+

1

4

〈
1, |∇hn|4

〉

=
1

4

〈
|∇(hn+1 + 2hn − hn−1)|2 , |δtt∇hn|2

〉
− 1

4

〈
1, |∇hn+1|4

〉
+

1

4

〈
1, |∇hn|4

〉
.(3.13)
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Using the definition of In
4 , together with (3.11), (3.12) and (3.13), we have

In
4 =

〈
(1 − |∇(2hn − hn−1)|2)∇(2hn − hn−1) , ∇(hn+1 − hn)

〉

=
1

2
‖∇hn+1‖2 − 1

2
‖∇hn‖2 − 1

2
‖δtt∇hn‖2 +

1

2
‖δt∇hn−1‖2

+
1

2

〈
|∇(2hn − hn−1)|2 , |δtt∇hn|2

〉
+ Jn

4

≤ −1

2

〈
1 − |∇(2hn − hn−1)|2 , |δtt∇hn|2

〉
+

1

2
‖∇hn+1‖2 − 1

2
‖∇hn‖2 +

1

2
‖δt∇hn−1‖2

+
1

4

〈
|∇(hn+1 + 2hn − hn−1)|2 , |δtt∇hn|2

〉
− 1

4

〈
1, |∇hn+1|4

〉
+

1

4

〈
1, |∇hn|4

〉

=

〈
1

2
|∇(2hn − hn−1)|2 − 1

2
+

1

4
|∇(hn+1 + 2hn − hn−1)|2 , |δtt∇hn|2

〉

−1

4
‖|∇hn+1|2 − 1‖2 +

1

4
‖|∇hn|2 − 1‖2 +

1

2
‖δt∇hn−1‖2.

The above result, together with (3.6) and (3.7)–(3.9), yields

Ẽn+1 ≤ Ẽn +
1

2
‖δt∇hn−1‖2

+

〈
−A

2
+

1

2
|∇(2hn − hn−1)|2 − 1

2
+

1

4
|∇(hn+1 + 2hn − hn−1)|2 , |δtt∇hn|2

〉
.

The last term above can be made non-positive provided that

A ≥ |∇(2hn − hn−1)|2 − 1 +
1

2
|∇(hn+1 + 2hn − hn−1)|2, a.e. in Ω.

Using the fact that

‖δt∇hn−1‖2 = ∆t2‖∇(hn − hn−1)/∆t‖2 = O(∆t2),

we obtain (3.2). Summing (3.2) over n gives Ẽn ≤ Ẽ1 + O(∆t). In particular, by using

the definition of Ẽ and the energy E defined by (2.7), we have

E(hn) ≤ E(h1) + O(1)∆t,

where the O(1) term is given by

O(1) = ‖(h1 − h0)/∆t‖2 +
A

2
∆t‖∇(h1 − h0)/∆t‖2

+
n−1∑

i=1

∆t‖∇(hi − hi−1)/∆t‖2.

This completes the proof of this theorem. �

Remark 3.1 By comparing (2.9) and (3.5), we notice that the constant A used for the

second-order scheme is two times larger than that for the 1st order scheme.
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Similarly, a second order scheme of the BD2/EP2-type can be constructed for the square

symmetry current model (2.2):

3hn+1 − 4hn + hn−1

2∆t
+ δ∆2hn+1 − A∆hn+1 (3.14)

= −2A∆hn + A∆hn−1 −
[(

1 − (2hn
x − hn−1

x )2
)
(2hn

x − hn−1
x )

]
x

−
[(

1 − (2hn
y − hn−1

y )2
)
(2hn

y − hn−1
y )

]
y

.

Then a similar analysis as in Theorem 3.1 can be carried out to obtain a stability result.

The details will be omitted here.

3.2 Third-order scheme: BD3/EP3

A third order scheme for solving the MBE model of general form (1.1) can be constructed

in a similar manner as used in the last subsection. Specifically, we can obtain the BD3/EP3

scheme in the following form:

11hn+1 − 18hn + 9hn−1 − 2hn−2

6∆t
+ δ∆2hn+1 − A∆hn+1

= −A∆(3hn − 3hn−1 + hn−2) −∇ · J(∇(3hn − 3hn−1 + hn−2)), ∀n ≥ 2,

(3.15)

where, in order to start the iteration, h1, h2 are calculated via a first and second order

scheme respectively.

The stability analysis of the scheme (3.15) requires some very detailed energy estimates

and will not be presented here. The numerical results obtained in the next two sections

indicate that the third order time discretization of type (3.15) is also stable as long as the

constant A is sufficiently large.

4 Numerical experiments: stability and accuracy tests

A complete numerical algorithm also requires a discretization strategy in space. Since

Fourier spectral method is one of the most suitable spatial approximation methods for

periodic problems [2, 7, 21], it will be employed to handle the spatial discretization. To

demonstrate the principal ideas, we consider the full discretization for the MBE model

with the isotropic current using the first-order time stepping method, namely, we will only

consider the full discretization for (2.4). It is to find an approximate solution hn
K(x) in

form of a truncated Fourier expansion:

hn
K(x) =

K∑

k1,k2=−K

ĥn
k
exp(−ikx),

13



where k = (k1, k2), K is a positive integer. The above expansion is required to satisfy the

following weak formulation:

1

∆t

〈
hn+1

K − hn
K , ϕ

〉
+ δ

〈
∆hn+1

K , ∆ϕ
〉

+ A
〈
∇hn+1

K ,∇ϕ
〉

(4.1)

=
〈
(1 − |∇hn

K|2 + A)∇hn
K ,∇ϕ

〉
, ∀ϕ ∈ SK ,

where

SK = span{exp(−ikx), −K ≤ k1, k2 ≤ K}.
For the full discretization problem (4.1), an energy inequality similar to that of Theorem

2.1 can be derived (its proof will be omitted here).

Theorem 4.1 Consider the numerical scheme (4.1). If

A ≥ max
x∈Ω

{
1

2
(|∇hn

K|2 − 1) +
1

4
|∇hn+1

K + ∇hn
K |2

}
, (4.2)

then the solution of (4.1) satisfies

E(hn+1

K ) ≤ E(hn
K), ∀n ≥ 0, (4.3)

where the energy E is defined by (2.7). Moreover, if the numerical solution of (4.1) is

convergent in W 1,∞(Ω× (0, T ]) as K → ∞ and ∆t → 0, then the constant A can be chosen

to satisfy

A ≥ 3

2
|∇h|2 − 1

2
, a.e. in Ω × (0, T ], (4.4)

where h(x, t) is a solution of (2.1).

By applying the Fourier transformation to Eq. (2.4), we obtain a set of ordinary

differential equations for each mode k in the Fourier space,

ĥn+1

k
− ĥn

k

∆t
+ δ|k|4ĥn+1

k
+ A|k|2ĥn+1

k
= −ik

{
(1 − |∇hn

K|2 + A)∇hn
K

}
k

, (4.5)

where |k| =
√

k2
1 + k2

2 is the magnitude of k, and {f}k represents the kth-mode Fourier

coefficient of the function f . The Fourier coefficients of the nonlinear term (1 − |∇hn
K |2 +

A)∇hn
K are calculated by performing the discrete fast Fourier transform. It is readily

seen that for a given level n the evaluation of all {(1 − |∇hn
K|2 + A)∇hn

K}
k

requires 8N

one dimensional FFT with vector length N = 2K. This is also the total cost to compute

ĥn+1

k
from (4.5). In practical calculation, we work on the spectral space. At the final

time level, an additional FFT is needed to recover the physical nodal values hn+1

K (x) from

ĥn+1

k
,−K ≤ k1, k2 ≤ K.

The purpose of this section is to verify the stability of the proposed numerical schemes

in terms of the choice of the constant A. More serious applications will be reported in the

next section.
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Table 1: Example 4.1: stability comparison with different A and δ. Here BDr stands for

r-th order backward differentiation and EPr for r-th order extrapolation.

δ A BD1/EP1 BD2/EP2 BD3/EP3

A = 0 ∆tc ≈ 1 ∆tc < 0.3 ∆tc < 0.1

0.1 A = 1 ∆tc ≈ 1 ∆tc ≈ 1 ∆tc ≈ 0.5

A = 2 ∆tc ≈ 1 ∆tc ≈ 1 0.2 ≤ ∆tc < 0.5

A = 0 ∆tc < 0.1 ∆tc < 0.01 ∆tc < 0.002

0.01 A = 1 ∆tc ≈ 1 ∆tc ≈ 0.1 ∆tc ≈ 0.002

A = 2 ∆tc ≈ 1 ∆tc ≈ 1 ∆tc ≈ 0.05

A = 0 ∆tc < 0.01 ∆tc < 0.001 ∆tc < 10−4

0.001 A = 1 ∆tc ≈ 1 ∆tc ≈ 0.005 0.0005 ≤ ∆tc < 10−3

A = 2 ∆tc ≈ 1 ∆tc ≈ 1 ∆tc ≈ 0.005

Table 2: Example 4.1: accuracy with different choices of A. δ = 0.01

A ∆t BD1/EP1 BD2/EP2 BD3/EP3

∆t = 0.01 0.72E-03 unstable unstable

A = 0
∆t = 0.005 0.36E-03 0.24E-04 unstable

∆t = 0.0025 0.18E-03 0.61E-05 unstable

∆t = 0.00125 0.90E-04 0.16E-05 unstable

∆t = 0.01 0.22E-02 0.21E-03 unstable

A = 1
∆t = 0.005 0.11E-02 0.56E-04 unstable

∆t = 0.0025 0.51E-03 0.14E-04 unstable

∆t = 0.00125 0.25E-03 0.37E-05 0.43E-06

∆t = 0.01 0.43E-02 0.32E-03 0.22E-03

A = 2
∆t = 0.005 0.19E-02 0.87E-04 0.21E-04

∆t = 0.0025 0.88E-03 0.23E-04 0.30E-05

∆t = 0.00125 0.43E-03 0.58E-05 0.53E-06

Example 4.1 Consider an isotropic symmetry current model (2.1):




ht = −δ∆2h −∇ · [(1 − |∇h|2)∇h], [0, 2π]2 × (0, T ],

h(·, t) is 2π − periodic, ∀t ∈ (0, T ],

h(x, 0) = h0(x) ∀x ∈ [0, 2π]2,

(4.6)

with δ = 0.1, 0.01, 0.001 and

h0(x) = 0.1(sin 3x sin 2y + sin 5x sin 5y). (4.7)

This problem was used by Li & Liu [12] to study the most unstable modes. It was

proved that with the initial condition (4.7) the most unstable modes are those with wave-
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Figure 1: Isolines of the solution at t = 1 for δ = 0.01.

vectors k such that |k| =
√

5. Numerically, they showed that after short interaction of

the unstable modes, the solution converges to a steady-state which consists mainly of one

mode only.

Define ∆tc as the largest possible time which allows stable numerical computation. In

other words, if the time step is greater than ∆tc then the numerical solution will blow up.

In Table 1, we list the values of ∆tc for the schemes (2.4), (3.1) and (3.15) with different

choices of A. All these semi-discrete schemes are approximated by the Fourier spectral

methods in space. The Fourier mode number used in the calculations is K = 128. Several

observations are made from Table 1:

• If A = 0, i.e., if a conventional implicit-explicit approach is used, then the numerical

methods suffer from extremely small time steps, in particular when higher-order

schemes are used or δ � 1;

• The improvement on stability with the use of the constant A is significant. When A

is sufficiently large (in this case A ≥ 2), quite large time step (in this case ∆t ≥ 1)

can be used for first- and second-order time discretizations;

• The choice of A depends on the order of time discretization. For the third-order

methods, quite small time step has to be used, which is unpractical for large time
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simulations.

We now turn to time accuracy comparison. Since the exact solution for problem (4.6)

is unknown, we use numerical results of BD3/EP3 with ∆t = 0.0001 and K = 128 as the

“exact” solution. The coefficient δ is set to be 0.01 and the numerical errors are computed

at t = 1. In this case, the “exact” solution obtained by using BD3/EP3 is plotted in Figure

1. Table 2 shows the L2-errors using several values of A and four time steps. It is seen

that once the methods are stable, the expected order of convergence (in time) is obtained.

5 Numerical experiments: coarsening dynamics

In this section, we present the numerical results by simulating the MBE model (1.1) in

both cases of isotropic surface (2.1) and square surface (2.2). The simulations are carried

out in the domain Ω = (0, 1000)2, where double periodic boundary conditions are used

in the spatial directions. The initial condition is a random state by assigning a random

number varying from -0.001 to 0.001 to each grid point. The second order schemes, i.e.

(3.1) for the isotropic surface model and (3.14) for the square surface model, are used in our

simulations. The spatial discretization is based on a Fourier pseudospectral approximation

with K denoting the Fourier mode number. In order to investigate the effect of the time

and space resolution, different values of ∆t and K have been tested.

5.1 Growth on the isotropic symmetry surfaces

First we carry out the simulation of the growth process for the case of isotropic surfaces.

In Figs. 2 and 3, the isolines of the free energy Ffree(x, t) at t = 40, 000 and 80, 000 are

plotted respectively with (K, ∆t) = (512, 1) and A = 1, where Ffree(x, t) is defined by

Ffree =
1

4
(|∇h|2 − 1)2 +

δ

2
|∆h|2.

The contourlines of Ffree are usually used to identify the edges of the pyramidal structures

since the free energy is concentrated on the edges. In these two figures the temporal

evolution of the morphology of the growing surface is well visualized. It is seen that the

edges of the pyramids (white areas) form a random network over the surface, which separate

the facets of the pyramids. The pyramids grow in time via a coarsening process, as it is

evident from Fig. 2 and Fig. 3. Also shown is the randomness of the orientation of the

pyramid edges, resulting from the isotropic nature of the surface symmetry. This result is

in good agreement with the published results, see, e.g., [14].

Fig. 4 presents the power laws of the growing of the interface height h̃(t) and width

λ(t) of the pyramidal structures. Here h̃(t) is defined by

h̃(t) =

(
1

|Ω|

∫

Ω

h2(x, t)idx

) 1

2

.
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Figure 2: The isotropic symmetry surfaces problem: the contour plot at t = 40, 000, obtained by using

K = 512 and ∆t = 1.

Figure 3: Same as Fig. 2, except at t = 80, 000.

The width of the pyramid edges λ(t) measures the mean size of the network cell, which
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Figure 4: The isotropic symmetry surfaces problem: growth power law obtained by using K = 512 and

∆t = 1 (log to log scale).
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Figure 5: Same as Fig. 4, except with K = 256 and ∆t = 0.5.

can be calculated as in [14] from the height-height correlation function

Khh(r, t) =

∫

Ω

h(x + r, t)h(x, t)dx,
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where r is a positive vector. In our calculations, we used a simpler form r = (r, r)T .

With r = (r, r)T , Khh(r, t) can be considered as a function of r for fixed t, and shows

an oscillatory character reflecting presence of mound structures. For a given t, the mean

pyramid width λ(t) is defined as r0(t), which is the first zero crossing of Khh(r, t),

r0(t) = inf{r > 0, Khh(r, t) = 0}.

We see from Fig. 4 that both vertical height and lateral width of the pyramids grow in

time as power law ctn with exponents n close to 1

3
(slope of the lines), which is again in

good agreement with the existing experimental and numerical results [14, 23].

In order to check the temporal and spatial resolution, we display in Fig. 5 the result

obtained by using (K, ∆t) = (256, 0.5), i.e., halving the values of K and ∆t. It is observed

from Fig. 4 and Fig. 5 that there is no significant difference between the results obtained

by using the two sets of parameters.

To demonstrate the robustness of the proposed method we plot in Fig. 6 the evolution

of the mean height

h̄(t) =
1

|Ω|

∫

Ω

h(x, t)dx.

It is observed that h̄(t) remains practically zero in the entire time intervals. This demon-

strates the mass conservation which can be derived from the equation (2.1). The energy

defined in (2.7), normalized by the domain size, is plotted in Fig. 7. The decay of the

energy as observed in Fig. 7 agrees with the theoretical result (2.6).

5.2 Growth on the square symmetry surfaces

Here we present simulation results obtained by solving the MBE model (2.2). The time

discretization used in the simulation is the second-order scheme (3.14), space discretization

is the same as in the isotropic case, but here with Fourier mode number K = 384 and time

step ∆t = 0.2.

In Figs. 8 and 9, we plot the contourlines of the free energy function F ′

free corresponding

to the square symmetry model,

F ′

free =
δ

2
|∆h|2 +

1

4

[
(h2

x − 1)2 + (h2
y − 1)2

]
.

As in the case of the isotropic surfaces, pyramid-like structures are growing in the surface

with sharp edges carrying most of energy, identified by the network formed by the white

areas. However in contrast to the isotropic case, the pyramid edges are well oriented

toward the four preferred directions reflecting the square symmetry. A careful look at the

two figures finds that the well known dislocation feature is also presented, as reported by

many experiments and simulations. Moreover, it is observed from Fig. 10 that the power
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Figure 6: Evolution of the mean height as a function of the time.

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 10000  20000  30000  40000  50000  60000  70000  80000

En
er

gy

Time t

Energy evolution

Figure 7: Evolution of the energy as a function of the time.

law obtained for the pyramid growth with the square symmetry is close to 1

4
. This is in a

good agreement with the numerical predictions of Siegert [19] and Moldovan & Golubovic

[14].
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Figure 8: The square symmetry surface problem: the contour plot at t = 40, 000, obtained by using

K = 384 and ∆t = 0.2.

Figure 9: Same as Fig. 8, except at t = 80, 000.

6 Conclusions

In this work, we have developed and analyzed stable numerical methods for a class of

nonlinear diffusion equations modeling epitaxial growth of thin films. Here, stability means
22
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Figure 10: The square symmetry surface problem: growth power law obtained by using K = 384 and

∆t = 0.2.

that the decay of energy is preserved. In particular, we analyzed the stability properties

of a class of semi-discretized (in time) schemes which are designed for large-system and

long-time simulations. It is demonstrated that the classical semi-implicit method can be

improved by simply adding some linear terms consistent with the truncation errors in

time. The linear term consists of mixed derivatives, and the resulting numerical schemes

are still semi-implicit with explicit treatment for the nonlinear terms. We also performed

numerical simulations using the proposed schemes in time coupled with a Fourier spectral

method in space for the molecular beam epitaxy model and determined power laws for

the coarsening process. The numerical results are in good agreement with the existing

ones, e.g., Moldovan and Golubovic [14] who directly solved a so-called type-A dynamics

equations on a hexagonal grid.

One of the future works along this direction is to carry out more rigorous analysis for

the large time-stepping techniques, including stability analysis for higher order schemes

(say, 3rd order time stepping) and error analysis for the proposed schemes. Obtaining a

satisfactory error bound for a numerical scheme for the MBE models seems difficult: a

direct error analysis shows that the error bounds are dependent on the surface diffusion

constant δ and the solution time-interval, which leads to unacceptable estimate for small δ

and large T . A desired bound should have weak dependence on δ and T , which seems very

difficult. Other future works along this direction include adaptive time integration, i.e.,

to treat the fast dynamics changes and slow changes separately. This is also important to
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improve the efficiency for the large-time simulations.
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