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Abstract

We consider numerical methods for solving the fractional-in-space Allen-Cahn (FiSAC) equa-

tion which contains small perturbation parameters and strong noninearilty. Standard fully dis-

cretized schemes for the the FiSAC equation will be considered, namely, in time the conventional

first-order implicit-explicit scheme or second-order Crank-Nicolson scheme and in space a second-

order finite difference approach. The main purpose of this work is to establish discrete stability

in both maximum and energy norms. In particular, we will show that the numerical results ob-

tained by using the fully discretized schemes are conditionally stable: both the discrete maximum

principle and the energy decaying properties are preserved under certain restrictions on the time

step. Moreover, our analysis applied to one to three space dimensions. Numerical experiments

are performed to verify the theoretical results.
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1 Introduction

In this paper, we study the numerical approximations to the fractional-in-space Allen-Cahn equation

(FiSAC)

∂u

∂t
= −ǫ2(−∆)

α

2 u − f(u), x ∈ Ω, t ∈ (0, T ], (1.1)

u(x, 0) = u0(x), x ∈ Ω̄, (1.2)

u|∂Ω = 0, (1.3)

where Ω is a bounded regular domain in Rd (d = 1, 2, 3), α ∈ (1, 2), and the nonlinear source term

is taken as the same as in the standard Allen-Cahn equation. The fractional Laplacian operator in

one-space diemension is defined by the Riesz fractional derivative

− (−∆)
α

2 u = −(−∆)
α

2

x u :=
1

−2 cos πα
2

(aD
α
xu + xDα

b u), (1.4)

where the left and right Riemann-Liouville fractional derivatives are defined as

aD
α
xu =

1

Γ(2 − α)

d2

dx2

∫ x

a

u(ξ)

(x − ξ)α−1
, (1.5)

xDα
b u =

1

Γ(2 − α)

d2

dx2

∫ b

x

u(ξ)

(x − ξ)α−1
. (1.6)

The fractional Laplacian operators in 2D and 3D can be defined similarly. For example, the 3D

operator is defined as

− (−∆)
α

2 u(x, y, z) =

{

[

−(−∆)
α

2

x

]

+
[

−(−∆)
α

2

y

]

+
[

−(−∆)
α

2

z

]

}

u(x, y, z). (1.7)

Fractional models, in which a standard time or space differential operator is replaced by a corre-

sponding fractional differential operator, have a long history in, for example, physics, finance and

hydrology, with such models often being used to represent so-called anomalous diffusion. As the

analytical solutions can not be obtained, there have been increasing efforts in studying numerical

methods for solving the fractional differential equations. For the time fractional problems, finite

difference schemes and spectral methods have been investigated, see, e.g., [9–11].

In recent years, there has been tremendous interest in using the diffusive-interface phase-field

approach for modeling the mesoscale morphological pattern formation and interface motion. One

of the very effective mathematical models describing these physical phenomena is the Allen-Cahn

2



equation introduced in 1979 [1]. Roughly speaking, the Allen-Cahn equation describes regions with

u ≈ 1 and u ≈ −1 that grow and decay at the expense of one another. As the governing equations are

nonlinear, many numerical works have been devoted to the solutions of the Allen-Cahn equstion, see,

e.g., [?, 3–7, 14, 17, 19]. The key indicators for numerical solutions are high stability and accuracy,

which yield the requirement of small time step and spatial grid size. However, this requirement

seriously limits the system size and the length of the simulation time. As reliable performance of

the phase-field computations demands long simulation time, it is critical to understand the stability

properties of the underlying numerical schemes. One of the intrinsic properties of the Allen-Cahn

equation is that the energy function is decreasing with time. In the past two decades, the numerical

stability has been mostly restricted to this energy decreasing property. This is in particular becoming

popular due to the convex-concave splitting idea of Eyre [4]. Very recently, Tang and Yang [16]

established a stability cretiria in a stronger sense.

It is noted that the combination of the fractional model and the Allen-Cahn model, namely, the

fractional-in-space Allen-Cahn equation (1.1), is a challenging mathematical and numerical problem.

It has attracted attensions in recent years. For problem (1.1), Burrage et al. [2] proposed an efficient

implicit finite element scheme, Bueno-Orovio et al. [12] considered the Fourier spectral methods.

Zhuang et al. [20] considered the finite difference method for fractional-in-space reaction diffusion

equation with a nonlinear source term that satisfies the Lipschitz condition.

The main result in [16] is that the finite difference solutions of the Allen-Cahn equation satisfies

the maximum principle in the sense that if ther initial data is bounded by 1 then the numerical

solutions in later times can also be bounded uniformly by 1. In this work, we wish to see if this

maximum principle still holds for the numerical solutions of the FiSAC equation (1.1). To this

end, we consider a couple of standard fully discretized schemes for (1.1), i.e., we use the first-order

implicit-explicit scheme or second-order Crank-Nicolson scheme in time and the second-order finite

difference approximation in space. The main targets of this work are of two folds. First, we will

prove that the numerical soluions will satisfy the maximum principle in the sense mentioned above.

Secondly, we will show that the discrete energy of the numerical solutions decay with time.

The rest of the paper is organized as follows. In Section 2, fully discretized schemes to approx-

imate the FiSAC equation (1.1) will be provided. The stability in the mamimum-norm and in the
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energy norm will be established in Sections 3 and 4, respectively. In Section 5, some numerical

examples are carried out to illustrate the theoretical results and some concluding remarks will be

given in the last section.

2 The fully discretized schemes

We will adopt the finite difference approach in [15] to discretize the fractional Laplacian operator

−(−∆)
α

2 . To begin with, we denote Dh as the discrete matrix of the factional Laplacian perator. In

particular, the discrete matrix of aD
α
x with homogeneous Dirichlet boundary conditions on interval

[0, L] in one-space dimension is given by

A =
1

hα

























ω
(α)
1 ω

(α)
0

ω
(α)
2 ω

(α)
1 ω

(α)
0

... ω
(α)
2 ω

(α)
1

. . .

ω
(α)
N−1 . . .

. . .
. . . ω

(α)
0

ω
(α)
N ω

(α)
N−1 . . . ω

(α)
2 ω

(α)
1

























N×N

=:
1

hα
M,

where

ω
(α)
0 = α

2 , ω
(α)
1 = 2−α−α2

2 < 0, ω
(α)
2 = α(α2−α−4)

4 ,

1 ≥ ω
(α)
0 ≥ ω

(α)
3 ≥ ω

(α)
4 ≥ . . . ≥ 0,

∞
∑

k=0

ω
(α)
k = 0,

(2.8)

and h is the mesh size in space. Note that the discrete matrix of xDα
b is AT . Defining

D = M + MT (2.9)

produces the discrete matrix of the fractional Laplacian operator in one-space dimension:

D
(1)
h =

1

−2hα cos πα
2

D. (2.10)

Using the Kronecker tensor product notation, we can obtain the corresponding discrete matrix in

two space dimension

D
(2)
h =

1

−2hα cos πα
2

(I ⊗ D + D ⊗ I), (2.11)

where I is the N × N identity matrix. Similarly, the discrete matrix in three space dimension can

be represented as

D
(3)
h =

1

−2hα cos πα
2

(I ⊗ I ⊗ D + I ⊗ D ⊗ I + D ⊗ I ⊗ I). (2.12)
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We close this section by describing our numerical scheme for solving the FiSAC problem (1.1)-(1.3).

This is done by using the finite difference method described above together with the standard first-

order implicit-explicit (linear) scheme or the second-order Crank-Nicolson (nonlinear) scheme in

time. More precisely, we have

Un+1 − Un

τ
+ ((Un).3 − Un) = ǫ2DhUn+1 (2.13)

and

Un+1 − Un

τ
+

(Un+1).3 − Un+1

2
+

(Un).3 − Un

2
=

ǫ2(DhUn+1 + DhUn)

2
, (2.14)

where τ denotes the time stepsize, Un represents the vector of numerical solution, and

(Un).3 := ((Un
1 )3, (Un

2 )3, · · · , (Un
N )3)T .

In the sense of the truncation error, the approximation (2.13) is of order O(τ + h2) and (2.13) is of

odder O(τ2 + h2).

3 The discrete maximum principle

To bound the numerical solutions, we first prove two useful lemmas.

Lemma 1. If D
(d)
h , d = 1, 2, 3, is the discrete matrix defined in (2.10)-(2.12). Then Dh = D

(d)
h

satisfies the following properties:

• Dh is symmetric;

• Dh is negative definite, i.e. UT DhU < 0, for any U ∈ RN ;

• The elements of Dh = (bij) satisfy:

bii = −b < 0 and b ≥ max
i

∑

j 6=i

|bij |. (3.1)

Proof. From the definitions (2.10)-(2.12), it is obvious that if D in (2.9) satisfies the three properties

above so does Dh. Consequently, we only need to check whether D satisfies the three properties.

First, it follows from the definition D = M + MT that D is symmetric. Moreover, it can be easily
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verified that D = (dij) is of the form

D =

























2ω
(α)
1 ω

(α)
0 + ω

(α)
2 . . . ω

(α)
N−1 ω

(α)
N

ω
(α)
0 + ω

(α)
2 2ω

(α)
1 ω

(α)
0 + ω

(α)
2 . . . ω

(α)
N−1

... ω
(α)
0 + ω

(α)
2 2ω

(α)
1

. . .
...

ω
(α)
N−1 . . .

. . .
. . . ω

(α)
0 + ω

(α)
2

ω
(α)
N ω

(α)
N−1 . . . ω

(α)
0 + ω

(α)
2 2ω

(α)
1

























N×N

. (3.2)

Since 1 < α ≤ 2, we have

dii = 2ω
(α)
1 = 2 − α − α2 ≤ 0. (3.3)

Observe that

ω
(α)
0 + ω

(α)
2 =

α

2
+

α(α2 + α − 4)

4
=

α(α2 + α − 2)

4
≥ 0

and ω
(α)
3 ≥ ω

(α)
4 ≥ . . . ≥ 0. We then obtain that dij ≥ 0, i 6= j. Furthermore, it follows from (2.8)

that

−ω
(α)
1 > ω

(α)
0 +

N
∑

k=2

ω
(α)
k for 1 < α < 2,

−ω
(α)
1 = ω

(α)
0 +

∞
∑

k=2

ω
(α)
k for α = 2.

Consequently,

− dii = −2ω
(α)
1 ≥ 2ω

(α)
0 + 2

N
∑

k=2

ω
(α)
k ≥ max

i

∑

i6=j

dij = max
i

∑

i6=j

|dij |. (3.4)

This verifies (3.1), which implies that D is negative diagonally dominated and hence negative definite.

This completes the proof.

Lemma 2. Let B be a real N × N matrix and A = aI − B with a > 0. If B = (bij) satisfies

(3.1), then

‖Avvv‖∞ ≥ a‖vvv‖∞, ‖Avvv + c(vvv).3‖∞ ≥ a‖vvv‖∞ + c‖vvv‖3
∞, (3.5)

where c > 0 and vvv ∈ RN .

Proof. Suppose ‖vvv‖∞ = |vp|. Then |vp| ≥ |vj | for all 1 ≤ j ≤ N . To simplify the notation, denote

sss = Avvv, ttt = Avvv + c(vvv).3. (3.6)
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Then the pth components of sss and ttt are

sp = avp −
N

∑

j=1

bpjvj , tp = avp + cv3
p −

N
∑

j=1

bpjvj . (3.7)

Obviously, avp and cv3
p have same signs. Next we will check both avp and −

∑N
j=1 bpjvj have the

same sign. This can be verified by

avp ·



−
N

∑

j=1

bpjvj



 = avp



−bppvp −
∑

j 6=p

bpjvj



 = a



bv2
p −

∑

j 6=p

bpjvjvp





≥ a



b|vp|2 −
∑

j 6=p

|bpj ||vj ||vp|



 ≥ a



b|vp|2 −
∑

j 6=p

|bpj ||vp|2




≥ a



b −
∑

j 6=p

|bpj |



 |vp|2 ≥ 0. (3.8)

Therefore avp, cv3
p and −∑N

j=1 bpjvj are positive or negative simultaneously. Consequently,

|sp| ≥ a|vp| = a‖vvv‖∞, |tp| ≥ a|vp| + c|vp|3 = a‖vvv‖∞ + c‖vvv‖3
∞. (3.9)

Using the facts ‖sss‖∞ ≥ |sp| and ‖ttt‖∞ ≥ |tp| yields the desired estimates (3.5).

Theorem 1. Assume the initial value satisfies max
x∈Ω̄

|u0(x)| ≤ 1. Then the fully discrete scheme

(2.13) preserves the maximum principle in the sense that ||Un||∞ ≤ 1 for all n ≥ 1 provided that the

time stepsize satisfies 0 < τ ≤ 1
2 .

Proof. We prove this theorem by induction. First it follows from the assumption on u0 that ||U0||∞ ≤

1. We now assume that the result holds for n = m i.e. ||Um||∞ ≤ 1. Below we will check this upper

bound is also true for n = m + 1. It follows from the linear scheme (2.13) that

(I − τǫ2Dh)Um+1 = Um + τ
(

Um − (Um).3
)

. (3.10)

Since τǫ2Dh satisfies the properties in Lemma 1, it follows from Lemma 2 that

‖(I − τǫ2Dh)Um+1‖∞ ≥ ‖Um+1‖∞. (3.11)

Observe that each element of Um + τ
(

Um − (Um).3
)

is of the form

g(x) = x + τ(x − x3). (3.12)
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It can be verified that g′(x) = τ
(

1
τ

+ 1 − 3x2
)

≥ 0 for x ∈ [−1, 1] provided that 0 < τ ≤ 1
2 .

Consequently

max
|x|≤1

g(x) = g(1) = 1; min
|x|≤1

g(x) = g(−1) = −1,

which implies that |g(x)| ≤ 1 for |x| ≤ 1. As a result, we conclude
∥

∥Um + τ
(

Um − (Um).3
)∥

∥

∞
≤ 1

if ||Um||∞ ≤ 1. This, together with (3.10) and (3.11), completes the induction, and the proof of this

theorem is ended.

Theorem 2. Assume the initial value satisfies max
x∈Ω̄

|u0(x)| ≤ 1. Then the fully discrete scheme

(2.14) preserves the maximum principle in the sense that ||Un||∞ ≤ 1 for all n ≥ 1 provided that the

time stepsize satisfies

0 < τ ≤ min

{

1

2
,

hα

2dǫ2

}

, (3.13)

where d is the dimension number.

Proof. Again we will prove this theorem by induction. It follows from the scheme (2.14) that

(

1 − τ

2

)

Um+1 +
τ

2
(Um+1).3 − τǫ2

2
DhUm+1 =

(

I +
τǫ2

2
Dh

)

Um +
τ

2

(

Um − (Um).3
)

. (3.14)

By Lemma 2, we have

∥

∥

∥

∥

(

1 − τ

2

)

Um+1 +
τ

2
(Um+1).3 − τǫ2

2
DhUm+1

∥

∥

∥

∥

∞

≥
(

1 − τ

2

)

‖Um+1‖∞ +
τ

2
‖Um+1‖3

∞. (3.15)

Let H = 1
2I + τǫ2

2 Dh. Then

(

I +
τǫ2

2
Dh

)

Um +
τ

2

(

Um − (Um).3
)

= HUm +
Um + τ

(

Um − (Um).3
)

2
. (3.16)

It is easy to verify that the matrix H = (hij) in the d-dimension satisfies

i) hii =
1

2
− dτǫ2(α2 + α − 2)

4hα(− cos π
2 α)

, ii) hij |j 6=i ≥ 0 and max
i

∑

j

hij ≤
1

2
. (3.17)

If we assume hii ≥ 0, i.e.,

τ ≤ 2hα(− cos π
2 α)

dǫ2(α2 + α − 2)
, (3.18)

then H is non-negative, i.e., hij ≥ 0 for 1 ≤ i, j ≤ N . Consequently,

‖H‖∞ = max
i

∑

j

|hij | = max
i

∑

j

hij ≤
1

2
. (3.19)
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We further denote

p(α) :=
− cos π

2 α

α2 + α − 2
. (3.20)

It is easy to verify that

1

4
< p(α) <

π

6
, for α ∈ (1, 2). (3.21)

This allows us to simplify the constraint imposed on time step (3.18) as

τ ≤ hα

2dǫ2
. (3.22)

Now consider the last term of (3.16). If ‖Um‖∞ ≤ 1, using the argument for g(x) in the proof of

Theorem 1 gives
∥

∥Um + τ
(

Um − (Um).3
)∥

∥

∞
≤ 1, 0 < τ ≤ 1

2
. (3.23)

If ‖Um‖∞ ≤ 1, then combining (3.19) and (3.23) yields

∥

∥

∥

∥

(

I +
τǫ2

2
Dh

)

Um +
τ

2

(

Um − (Um).3
)

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

HUm +
Um + τ

(

Um − (Um).3
)

2

∥

∥

∥

∥

∥

∞

≤ ‖H‖∞‖Um‖∞ +
1

2

∥

∥Um + τ
(

Um − (Um).3
)∥

∥

∞
≤ 1

2
+

1

2
= 1, (3.24)

provided that the condition (3.13) is satisfied. Consequently, using (3.15) gives

(

1 − τ

2

)

‖Um+1‖∞ +
τ

2
‖Um+1‖3

∞ ≤ 1, (3.25)

which yields ‖Um+1‖∞ ≤ 1. This completes the proof of Theorem 2.

4 The discrete energy stability

After being semi-discretized in space, an ODE system is obtained

dU

dt
= ǫ2DhU + U − U .3, (4.1)

where Dh is given by (2.10)-(2.12) for one to three space dimensions, respectively. If we define the

following discrete energy:

Eh(U) =
1

4

N
∑

i=1

(U2
i − 1)2 − ǫ2

2
UT DhU, (4.2)
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then the ODE system (4.1) can be viewed as the gradient flow of the energy Eh(U), i.e.,

dU

dt
= −∇UEh(U). (4.3)

Taking L2 inner product of (4.3) with −dU
dt

yields

dEh(U)

dt
= −

∥

∥

∥

∥

dU

dt

∥

∥

∥

∥

2

2

≤ 0, (4.4)

which implies that the energy Eh(U) defined by (4.2) decays with time. Our next task is to show

that this energy stability can be inherited by both the first-order scheme (2.13) and the second-order

scheme (2.14).

Theorem 3. Under the conditions in Theorem 1, the numerical solutions obtained by the scheme

(2.13) can guarantee the discrete energy decay properly, i.e.,

Eh(Un+1) ≤ Eh(Un), for n = 0, 1, 2, · · · . (4.5)

Proof. Taking the difference of the discrete energy between two time level, we get

Eh(Un+1) − Eh(Un)

=
1

4

N
∑

i=1

[

(

(Un+1
i )2 − 1

)2
−

(

(Un
i )2 − 1

)2
]

− ǫ2

2

(

(Un+1)T DhUn+1 − (Un)T DhUn
)

. (4.6)

Taking L2 inner product of (2.13) with (Un+1 − Un)T obtains

N
∑

i=1

[

(

(Un
i )3 − Un

i

)

(Un+1
i − Un

i ) +
1

τ
(Un+1

i − Un
i )2

]

− ǫ2(Un+1 − Un)T DhUn+1 = 0. (4.7)

Since the discrete Laplace operator Dh is symmetric, we have

(Un+1 − Un)T DhUn+1

=
1

2

(

(Un+1)T DhUn+1 − (Un)T DhUn
)

+
1

2
(Un+1 − Un)T Dh(Un+1 − Un). (4.8)

Note that for all a, b ∈ [−1, 1]

(b3 − b)(a − b) + (a − b)2 ≥ 1

4

[

(

a2 − 1
)2 −

(

b2 − 1
)2

]

. (4.9)

Under the conditions in Theorem 1, we have ||Un+1||∞ ≤ 1 and ||Un||∞ ≤ 1. Consequently, com-

bining this with (4.6)-(4.9) gives

Eh(Un+1) − Eh(Un)

≤ ǫ2

2
(Un+1 − Un)T Dh(Un+1 − Un) +

(

1 − 1

τ

) N
∑

i=1

(Un+1
i − Un

i )2. (4.10)

10



As Dh is a negative definite matrix and 0 < τ ≤ 1
2 , the desired result follows from the above

inequality.

Theorem 4. Under the conditions in Theorem 2, the numerical solutions obtained by the scheme

(2.14) can guarantee the discrete energy decay properly, i.e.,

Eh(Un+1) ≤ Eh(Un), for n = 0, 1, 2, · · · . (4.11)

Proof. Taking L2 inner product of (2.14) with (Un+1 − Un)T obtains

N
∑

i=1

[

1

2

(

(Un+1
i )3 − Un+1

i

)

(Un+1
i − Un

i ) +
1

2

(

(Un
i )3 − Un

i

)

(Un+1
i − Un

i ) +
1

τ
(Un+1

i − Un
i )2

]

=
ǫ2

2
(Un+1 − Un)T Dh(Un+1 + Un). (4.12)

Since the discrete Laplace operator Dh is symmetric, we have

ǫ2

2
(Un+1 − Un)T Dh(Un+1 + Un) =

ǫ2

2

(

(Un+1)T DhUn+1 − (Un)T DhUn
)

. (4.13)

Note that for any a, b ∈ R

(a3 − a)(a − b) + (a − b)2 ≥ 1

4

[

(

a2 − 1
)2 −

(

b2 − 1
)2

]

. (4.14)

Under the conditions in Theorem 2, we have ‖Un+1‖∞ ≤ 1 and ‖Un‖∞ ≤ 1. Consequently, it follows

from (4.9) and (4.14) that

1

4

N
∑

i=1

[

(

(Un+1
i )2 − 1

)2
−

(

(Un
i )2 − 1

)2
]

≤
N

∑

i=1

[

1

2

(

(Un+1
i )3 − Un+1

i

)

(Un+1
i − Un

i ) +
1

2

(

(Un
i )3 − Un

i

)

(Un+1
i − Un

i ) + (Un+1
i − Un

i )2
]

. (4.15)

This together with (4.6) and (4.12)-(4.13), yield

Eh(Un+1) − Eh(Un) ≤
(

1 − 1

τ

) N
∑

i=1

(Un+1
i − Un

i )2. (4.16)

Since 0 < τ ≤ 1
2 , the right-hand side of (4.16) is non-positive,

Eh(Un+1) − Eh(Un) ≤ 0, (4.17)

which implies that (4.11) holds.
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We close this section by pointing out that although the above energy stability result for the

Crank-Nicolson scheme is conditional, our numerical experiements show that the condition (3.13)

may be removed, i.e., the energy stability may be unconditional. It is noted Qiao et al. [13] obtained

a unconditional energy stability result for the Crank-Nicolson approxoimation for a relevant phase-

field model.

5 Numerical Results

In this section, we present a number of numerical experiments to verify the theoretical results

obtained in the previous sections. We consider the one-dimensional FiSAC equation in the first two

examples and two-dimensional problem in the third example.

Example 1. This example uses the first order scheme (2.13) with the initial value

u0(x) =































√
3

2
− 200

√
3(x − 0.05)2, 0 ≤ x ≤ 0.05,

√
3

2
, 0.05 < x < 0.95,

√
3

2
− 200

√
3(x − 0.95)2, 0.95 ≤ x ≤ 1.

The mesh size in space is fixed as h = 0.01, and the time step τ and the fractional derivative

parameter α are varied. For the first-order implicit-explicit scheme (2.13) with α = 1.5 and the

parameter ǫ = 0.01, it can be observed from Fig. 1 that the discrete maximum principle is preserved

for τ = 0.5. However, the maximum value exceeds 1 for τ > 0.5, such as τ = 1 and 1.5. This result

is consistent with the theoretical prediction of Theorem 1. With the same parameters setting, we

plot the energy curve and observe that the energy decay property does not hold for τ > 0.5. This

result is consistent with the prediction of Theorem 2.

In Fig. 2, we choose τ = 0.01 and ǫ = 0.2 and plot the numerical solutions at t = 20 with

different fractional parameters α. It is observed that the numerical solutions become more gentle

when α varies from 2 to 1.1.

Example 2. The second eixample is concerned with the second-order scheme (2.14) with α = 1.5.

The following initial condition is used

u0(x) = 0.95 × rand(·) + 0.05,
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where rand(·) represents a random number on each point in (0, 1), and zero boundary values are set

for u0(x).

We fix the mesh size in space as h = 0.1 and the nonlinear equation (2.14) is solved by Newton’s

iteration method which turns out to be very efficient. Note the initial guess at each Newton iteration

is obtained by using the linear scheme (2.13). It is observed that the maximum principle is indeed

decided by the condition (3.13). To explain this more clearly, we denote θ = hα

2dǫ2
. For the case

ǫ = 0.1 (recall h = 0.1), we have θ ≈ 1.581, which implies that the condition (3.13) becomes τ ≤ 0.5.

In the top two sub-figures of Fig. 3, the maximum value of numerical solution is bounded by 1

for τ = 0.4 and exceeds 1 if τ = 1.5. If we change ǫ to be 0.9, then we obtain θ ≈ 0.0195, which

implies that the condition (3.13) becomes τ ≤ 0.0195. Indeed we observe that the maximum value

is preserved if τ = 0.01 and is not preserved if τ = 0.4.

Example 3. Consider the first order scheme (2.13) with following initial value in two-space

dimension:

u0(x, y) = 0.1 × rand(·) − 0.05,

where rand(·) represents a random number on each point in (0, 1)2. Zero boundary value is set for

u0(x, y).

We fix α = 1.5, ǫ = 0.02 and hx = hy = 0.01, while the time step τ will be varied. Fig. 4 shows

the numerical results and the energy curve, and it is found that similar behaviors for Example 1 are

observed.

In Fig. 5, we investigate the effects of fractional diffusion when spinodal decomposition is con-

sidered. For α = 2 the early stages of phase transition produce a rapid movement to bulk regions

of both phases and then motion slows down resulting in the state given at times t = 25, 50, 100,

respectively. Reducing the fractional power leads to thinner interfaces that allow for smaller bulk

regions and a much more heterogeneous phase structure. Furthermore, motion to large bulk regions

is dramatically slowed down for fractional models with α = 1.1, 1.4, 1.7. This phenomenon is

consistent with the fidning of [2].
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6 Conclusions

The main contribution of this work is the establishement of the maximum norm stability for the

discrete fractional-in-space Allem-Cahn equation. The result is obtained under a framework which

is independent of the space dimension. Under this framework we are also able to recover the energy

decaying property for the Crank-Nicolson time discretization approximation under certain restric-

tions on time steps. However, numerical experiments suggest that this energy stability may be

unconditional, which remian to be better understood by some refined analysis.
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Figure 1: Example 1 with scheme (2.13): (a) the maximum values with different times steps (α =

1.5, ǫ = 0.01); (b) energy curve with different times steps (α = 1.5, ǫ = 0.01).
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Figure 2: Example 1 with scheme (2.13): numerical solutions at t = 20 with different values of α

(τ = 0.01, ǫ = 0.2).
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Figure 3: Example 2 with α = 1.5 and h = 0.1: the numerical solutions for the scheme (2.14) with

different ǫ and τ .

19



(a)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

|U
| m

a
x

 

 

τ=0.5

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

t

|U
| m

a
x

 

 

τ=1

0 20 40 60
0

0.2

0.4

0.6

0.8

1

1.2

t

|U
| m

a
x

 

 

τ=1.5

(b)

0 10 20 30 40 50 60
150

200

250

300

350

400

450

500

550

600

t

En
gry

 

 
τ=0.5
τ=1
τ=1.5

Figure 4: Example 3 with the second-order scheme (2.13): (a) numerical solutions; and (b) energy

curve. α = 1.5 and ǫ = 0.02, with different time steps τ = 0.5, 1, 1.5.
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Figure 5: Example 3. Numerical solutions at a) t = 25, b) t = 50 and c) t = 100 with different

fractional derivatives α = 1.1, 1.4, 1.7, 2.

21


